File size: 47,431 Bytes
63f3cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
# -*- coding: UTF-8 -*-
'''=================================================
@Project -> File   pram -> recmap
@IDE    PyCharm
@Author fx221@cam.ac.uk
@Date   07/02/2024 11:02
=================================================='''
import argparse
import torch
import os
import os.path as osp
import numpy as np
import cv2
import yaml
import multiprocessing as mp
from copy import deepcopy
import logging
import h5py
from tqdm import tqdm
import open3d as o3d
from sklearn.cluster import KMeans, Birch
from collections import defaultdict
from colmap_utils.read_write_model import read_model, qvec2rotmat, write_cameras_binary, write_images_binary
from colmap_utils.read_write_model import write_points3d_binary, Image, Point3D, Camera
from colmap_utils.read_write_model import write_compressed_points3d_binary, write_compressed_images_binary
from recognition.vis_seg import generate_color_dic, vis_seg_point, plot_kpts


class RecMap:
    def __init__(self):
        self.cameras = None
        self.images = None
        self.points3D = None
        self.pcd = o3d.geometry.PointCloud()
        self.seg_color_dict = generate_color_dic(n_seg=1000)

    def load_sfm_model(self, path: str, ext='.bin'):
        self.cameras, self.images, self.points3D = read_model(path, ext)
        self.name_to_id = {image.name: i for i, image in self.images.items()}
        print('Load {:d} cameras, {:d} images, {:d} points'.format(len(self.cameras), len(self.images),
                                                                   len(self.points3D)))

    def remove_statics_outlier(self, nb_neighbors: int = 20, std_ratio: float = 2.0):
        xyzs = []
        p3d_ids = []
        for p3d_id in self.points3D.keys():
            xyzs.append(self.points3D[p3d_id].xyz)
            p3d_ids.append(p3d_id)

        xyzs = np.array(xyzs)
        pcd = o3d.geometry.PointCloud()
        pcd.points = o3d.utility.Vector3dVector(xyzs)
        new_pcd, inlier_ids = pcd.remove_statistical_outlier(nb_neighbors=nb_neighbors, std_ratio=std_ratio)

        new_point3Ds = {}
        for i in inlier_ids:
            new_point3Ds[p3d_ids[i]] = self.points3D[p3d_ids[i]]
        self.points3D = new_point3Ds
        n_outlier = xyzs.shape[0] - len(inlier_ids)
        ratio = n_outlier / xyzs.shape[0]
        print('Remove {:d} - {:d} = {:d}/{:.2f}% points'.format(xyzs.shape[0], len(inlier_ids), n_outlier, ratio * 100))

    def load_segmentation(self, path: str):
        data = np.load(path, allow_pickle=True)[()]
        p3d_id = data['id']
        seg_id = data['label']
        self.p3d_seg = {p3d_id[i]: seg_id[i] for i in range(p3d_id.shape[0])}
        self.seg_p3d = {}
        for pid in self.p3d_seg.keys():
            sid = self.p3d_seg[pid]
            if sid not in self.seg_p3d.keys():
                self.seg_p3d[sid] = [pid]
            else:
                self.seg_p3d[sid].append(pid)

        if 'xyz' not in data.keys():
            all_xyz = []
            for pid in p3d_id:
                xyz = self.points3D[pid].xyz
                all_xyz.append(xyz)
            data['xyz'] = np.array(all_xyz)
            np.save(path, data)
            print('Add xyz to ', path)

    def cluster(self, k=512, mode='xyz', min_obs=3, save_fn=None, method='kmeans', **kwargs):
        if save_fn is not None:
            if osp.isfile(save_fn):
                print('{:s} exists.'.format(save_fn))
                return
        all_xyz = []
        point3D_ids = []
        for p3d in self.points3D.values():
            track_len = len(p3d.point2D_idxs)
            if track_len < min_obs:
                continue
            all_xyz.append(p3d.xyz)
            point3D_ids.append(p3d.id)

        xyz = np.array(all_xyz)
        point3D_ids = np.array(point3D_ids)

        if mode.find('x') < 0:
            xyz[:, 0] = 0
        if mode.find('y') < 0:
            xyz[:, 1] = 0
        if mode.find('z') < 0:
            xyz[:, 2] = 0

        if method == 'kmeans':
            model = KMeans(n_clusters=k, random_state=0, verbose=True).fit(xyz)
        elif method == 'birch':
            model = Birch(threshold=kwargs.get('threshold'), n_clusters=k).fit(xyz)  # 0.01 for indoor
        else:
            print('Method {:s} for clustering does not exist'.format(method))
            exit(0)
        labels = np.array(model.labels_).reshape(-1)
        if save_fn is not None:
            np.save(save_fn, {
                'id': np.array(point3D_ids),  # should be assigned to self.points3D_ids
                'label': np.array(labels),
                'xyz': np.array(all_xyz),
            })

    def assign_point3D_descriptor(self, feature_fn: str, save_fn=None, n_process=1):
        '''
        assign each 3d point a descriptor for localization
        :param feature_fn: file name of features [h5py]
        :param save_fn:
        :param n_process:
        :return:
        '''

        def run(start_id, end_id, points3D_desc):
            for pi in tqdm(range(start_id, end_id), total=end_id - start_id):
                p3d_id = all_p3d_ids[pi]
                img_list = self.points3D[p3d_id].image_ids
                kpt_ids = self.points3D[p3d_id].point2D_idxs
                all_descs = []
                for img_id, p2d_id in zip(img_list, kpt_ids):
                    if img_id not in self.images.keys():
                        continue
                    img_fn = self.images[img_id].name
                    desc = feat_file[img_fn]['descriptors'][()].transpose()[p2d_id]
                    all_descs.append(desc)

                if len(all_descs) == 1:
                    points3D_desc[p3d_id] = all_descs[0]
                else:
                    all_descs = np.array(all_descs)  # [n, d]
                    dist = all_descs @ all_descs.transpose()  # [n, n]
                    dist = 2 - 2 * dist
                    md_dist = np.median(dist, axis=-1)  # [n]
                    min_id = np.argmin(md_dist)
                    points3D_desc[p3d_id] = all_descs[min_id]

        if osp.isfile(save_fn):
            print('{:s} exists.'.format(save_fn))
            return
        p3D_desc = {}
        feat_file = h5py.File(feature_fn, 'r')
        all_p3d_ids = sorted(self.points3D.keys())

        if n_process > 1:
            if len(all_p3d_ids) <= n_process:
                run(start_id=0, end_id=len(all_p3d_ids), points3D_desc=p3D_desc)
            else:
                manager = mp.Manager()
                output = manager.dict()  # necessary otherwise empty
                n_sample_per_process = len(all_p3d_ids) // n_process
                jobs = []
                for i in range(n_process):
                    start_id = i * n_sample_per_process
                    if i == n_process - 1:
                        end_id = len(all_p3d_ids)
                    else:
                        end_id = (i + 1) * n_sample_per_process
                    p = mp.Process(
                        target=run,
                        args=(start_id, end_id, output),
                    )
                    jobs.append(p)
                    p.start()

                for p in jobs:
                    p.join()

                p3D_desc = {}
                for k in output.keys():
                    p3D_desc[k] = output[k]
        else:
            run(start_id=0, end_id=len(all_p3d_ids), points3D_desc=p3D_desc)

        if save_fn is not None:
            np.save(save_fn, p3D_desc)

    def reproject(self, img_id, xyzs):
        qvec = self.images[img_id].qvec
        Rcw = qvec2rotmat(qvec=qvec)
        tvec = self.images[img_id].tvec
        tcw = tvec.reshape(3, )
        Tcw = np.eye(4, dtype=float)
        Tcw[:3, :3] = Rcw
        Tcw[:3, 3] = tcw
        # intrinsics
        cam = self.cameras[self.images[img_id].camera_id]
        K = self.get_intrinsics_from_camera(camera=cam)

        xyzs_homo = np.hstack([xyzs, np.ones(shape=(xyzs.shape[0], 1), dtype=float)])
        kpts = K @ ((Tcw @ xyzs_homo.transpose())[:3, :])  # [3, N]
        kpts = kpts.transpose()  # [N, 3]
        kpts[:, 0] = kpts[:, 0] / kpts[:, 2]
        kpts[:, 1] = kpts[:, 1] / kpts[:, 2]

        return kpts

    def find_covisible_frame_ids(self, image_id, images, points3D):
        covis = defaultdict(int)
        p3d_ids = images[image_id].point3D_ids

        for pid in p3d_ids:
            if pid == -1:
                continue
            if pid not in points3D.keys():
                continue
            for im in points3D[pid].image_ids:
                covis[im] += 1

        covis_ids = np.array(list(covis.keys()))
        covis_num = np.array([covis[i] for i in covis_ids])
        ind_top = np.argsort(covis_num)[::-1]
        sorted_covis_ids = [covis_ids[i] for i in ind_top]
        return sorted_covis_ids

    def create_virtual_frame_3(self, save_fn=None, save_vrf_dir=None, show_time=-1, ignored_cameras=[],
                               min_cover_ratio=0.9,
                               depth_scale=1.2,
                               radius=15,
                               min_obs=120,
                               topk_imgs=500,
                               n_vrf=10,
                               covisible_frame=20,
                               **kwargs):
        def reproject(img_id, xyzs):
            qvec = self.images[img_id].qvec
            Rcw = qvec2rotmat(qvec=qvec)
            tvec = self.images[img_id].tvec
            tcw = tvec.reshape(3, )
            Tcw = np.eye(4, dtype=float)
            Tcw[:3, :3] = Rcw
            Tcw[:3, 3] = tcw
            # intrinsics
            cam = self.cameras[self.images[img_id].camera_id]
            K = self.get_intrinsics_from_camera(camera=cam)

            xyzs_homo = np.hstack([xyzs, np.ones(shape=(xyzs.shape[0], 1), dtype=float)])
            kpts = K @ ((Tcw @ xyzs_homo.transpose())[:3, :])  # [3, N]
            kpts = kpts.transpose()  # [N, 3]
            kpts[:, 0] = kpts[:, 0] / kpts[:, 2]
            kpts[:, 1] = kpts[:, 1] / kpts[:, 2]

            return kpts

        def find_best_vrf_by_covisibility(p3d_id_list):
            all_img_ids = []
            all_xyzs = []

            img_ids_full = []
            img_id_obs = {}
            for pid in p3d_id_list:
                if pid not in self.points3D.keys():
                    continue
                all_xyzs.append(self.points3D[pid].xyz)

                img_ids = self.points3D[pid].image_ids
                for iid in img_ids:
                    if iid in all_img_ids:
                        continue
                    # valid_p3ds = [v for v in self.images[iid].point3D_ids if v > 0 and v in p3d_id_list]
                    if len(ignored_cameras) > 0:
                        ignore = False
                        img_name = self.images[iid].name
                        for c in ignored_cameras:
                            if img_name.find(c) >= 0:
                                ignore = True
                                break
                        if ignore:
                            continue
                    # valid_p3ds = np.intersect1d(np.array(self.images[iid].point3D_ids), np.array(p3d_id_list)).tolist()
                    valid_p3ds = [v for v in self.images[iid].point3D_ids if v > 0]
                    img_ids_full.append(iid)
                    if len(valid_p3ds) < min_obs:
                        continue

                    all_img_ids.append(iid)
                    img_id_obs[iid] = len(valid_p3ds)
            all_xyzs = np.array(all_xyzs)

            print('Find {} 3D points and {} images'.format(len(p3d_id_list), len(img_id_obs.keys())))
            top_img_ids_by_obs = sorted(img_id_obs.items(), key=lambda item: item[1], reverse=True)  # [(key, value), ]
            all_img_ids = []
            for item in top_img_ids_by_obs:
                all_img_ids.append(item[0])
                if len(all_img_ids) >= topk_imgs:
                    break

            # all_img_ids = all_img_ids[:200]
            if len(all_img_ids) == 0:
                print('no valid img ids with obs over {:d}'.format(min_obs))
                all_img_ids = img_ids_full

            img_observations = {}
            p3d_id_array = np.array(p3d_id_list)
            for idx, img_id in enumerate(all_img_ids):
                valid_p3ds = [v for v in self.images[img_id].point3D_ids if v > 0]
                mask = np.array([False for i in range(len(p3d_id_list))])
                for pid in valid_p3ds:
                    found_idx = np.where(p3d_id_array == pid)[0]
                    if found_idx.shape[0] == 0:
                        continue
                    mask[found_idx[0]] = True

                img_observations[img_id] = mask

            unobserved_p3d_ids = np.array([True for i in range(len(p3d_id_list))])

            candidate_img_ids = []
            total_cover_ratio = 0
            while total_cover_ratio < min_cover_ratio:
                best_img_id = -1
                best_img_obs = -1
                for idx, im_id in enumerate(all_img_ids):
                    if im_id in candidate_img_ids:
                        continue
                    obs_i = np.sum(img_observations[im_id] * unobserved_p3d_ids)
                    if obs_i > best_img_obs:
                        best_img_id = im_id
                        best_img_obs = obs_i

                if best_img_id >= 0:
                    # keep the valid img_id
                    candidate_img_ids.append(best_img_id)
                    # update the unobserved mask
                    unobserved_p3d_ids[img_observations[best_img_id]] = False
                    total_cover_ratio = 1 - np.sum(unobserved_p3d_ids) / len(p3d_id_list)
                    print(len(candidate_img_ids), best_img_obs, best_img_obs / len(p3d_id_list), total_cover_ratio)

                    if best_img_obs / len(p3d_id_list) < 0.01:
                        break

                    if len(candidate_img_ids) >= n_vrf:
                        break
                else:
                    break

            return candidate_img_ids
            # return [(v, img_observations[v]) for v in candidate_img_ids]

        if save_vrf_dir is not None:
            os.makedirs(save_vrf_dir, exist_ok=True)

        seg_ref = {}
        for sid in self.seg_p3d.keys():
            if sid == -1:  # ignore invalid segment
                continue
            all_p3d_ids = self.seg_p3d[sid]
            candidate_img_ids = find_best_vrf_by_covisibility(p3d_id_list=all_p3d_ids)

            seg_ref[sid] = {}
            for can_idx, img_id in enumerate(candidate_img_ids):
                cam = self.cameras[self.images[img_id].camera_id]
                width = cam.width
                height = cam.height
                qvec = self.images[img_id].qvec
                tvec = self.images[img_id].tvec

                img_name = self.images[img_id].name
                orig_p3d_ids = [p for p in self.images[img_id].point3D_ids if p in self.points3D.keys() and p >= 0]
                orig_xyzs = []
                new_xyzs = []
                for pid in all_p3d_ids:
                    if pid in orig_p3d_ids:
                        orig_xyzs.append(self.points3D[pid].xyz)
                    else:
                        if pid in self.points3D.keys():
                            new_xyzs.append(self.points3D[pid].xyz)

                if len(orig_xyzs) == 0:
                    continue

                orig_xyzs = np.array(orig_xyzs)
                new_xyzs = np.array(new_xyzs)

                print('img: ', osp.join(kwargs.get('image_root'), img_name))
                img = cv2.imread(osp.join(kwargs.get('image_root'), img_name))
                orig_kpts = reproject(img_id=img_id, xyzs=orig_xyzs)
                max_depth = depth_scale * np.max(orig_kpts[:, 2])
                orig_kpts = orig_kpts[:, :2]
                mask_ori = (orig_kpts[:, 0] >= 0) & (orig_kpts[:, 0] < width) & (orig_kpts[:, 1] >= 0) & (
                        orig_kpts[:, 1] < height)
                orig_kpts = orig_kpts[mask_ori]

                if orig_kpts.shape[0] == 0:
                    continue

                img_kpt = plot_kpts(img=img, kpts=orig_kpts, radius=[3 for i in range(orig_kpts.shape[0])],
                                    colors=[(0, 0, 255) for i in range(orig_kpts.shape[0])], thickness=-1)
                if new_xyzs.shape[0] == 0:
                    img_all = img_kpt
                else:
                    new_kpts = reproject(img_id=img_id, xyzs=new_xyzs)
                    mask_depth = (new_kpts[:, 2] > 0) & (new_kpts[:, 2] <= max_depth)
                    mask_in_img = (new_kpts[:, 0] >= 0) & (new_kpts[:, 0] < width) & (new_kpts[:, 1] >= 0) & (
                            new_kpts[:, 1] < height)
                    dist_all_orig = torch.from_numpy(new_kpts[:, :2])[..., None] - \
                                    torch.from_numpy(orig_kpts[:, :2].transpose())[None]
                    dist_all_orig = torch.sqrt(torch.sum(dist_all_orig ** 2, dim=1))  # [N, M]
                    min_dist = torch.min(dist_all_orig, dim=1)[0].numpy()
                    mask_close_to_img = (min_dist <= radius)

                    mask_new = (mask_depth & mask_in_img & mask_close_to_img)

                    cover_ratio = np.sum(mask_ori) + np.sum(mask_new)
                    cover_ratio = cover_ratio / len(all_p3d_ids)

                    print('idx: {:d}, img: ori {:d}/{:d}/{:.2f}, new {:d}/{:d}'.format(can_idx,
                                                                                       orig_kpts.shape[0],
                                                                                       np.sum(mask_ori),
                                                                                       cover_ratio * 100,
                                                                                       new_kpts.shape[0],
                                                                                       np.sum(mask_new)))

                    new_kpts = new_kpts[mask_new]

                    # img_all = img_kpt
                    img_all = plot_kpts(img=img_kpt, kpts=new_kpts, radius=[3 for i in range(new_kpts.shape[0])],
                                        colors=[(0, 255, 0) for i in range(new_kpts.shape[0])], thickness=-1)

                cv2.namedWindow('img', cv2.WINDOW_NORMAL)
                cv2.imshow('img', img_all)

                if save_vrf_dir is not None:
                    cv2.imwrite(osp.join(save_vrf_dir,
                                         'seg-{:05d}_can-{:05d}_'.format(sid, can_idx) + img_name.replace('/', '+')),
                                img_all)

                key = cv2.waitKey(show_time)
                if key == ord('q'):
                    cv2.destroyAllWindows()
                    exit(0)

                covisile_frame_ids = self.find_covisible_frame_ids(image_id=img_id, images=self.images,
                                                                   points3D=self.points3D)
                seg_ref[sid][can_idx] = {
                    'image_name': img_name,
                    'image_id': img_id,
                    'qvec': deepcopy(qvec),
                    'tvec': deepcopy(tvec),
                    'camera': {
                        'model': cam.model,
                        'params': cam.params,
                        'width': cam.width,
                        'height': cam.height,
                    },
                    'original_points3d': np.array(
                        [v for v in self.images[img_id].point3D_ids if v >= 0 and v in self.points3D.keys()]),
                    'covisible_frame_ids': np.array(covisile_frame_ids[:covisible_frame]),
                }
        # save vrf info
        if save_fn is not None:
            print('Save {} segments with virtual reference image information to {}'.format(len(seg_ref.keys()),
                                                                                           save_fn))
            np.save(save_fn, seg_ref)

    def visualize_3Dpoints(self):
        xyz = []
        rgb = []
        for point3D in self.points3D.values():
            xyz.append(point3D.xyz)
            rgb.append(point3D.rgb / 255)

        pcd = o3d.geometry.PointCloud()
        pcd.points = o3d.utility.Vector3dVector(xyz)
        pcd.colors = o3d.utility.Vector3dVector(rgb)
        o3d.visualization.draw_geometries([pcd])

    def visualize_segmentation(self, p3d_segs, points3D):
        p3d_ids = p3d_segs.keys()
        xyzs = []
        rgbs = []
        for pid in p3d_ids:
            xyzs.append(points3D[pid].xyz)
            seg_color = self.seg_color_dict[p3d_segs[pid]]
            rgbs.append(np.array([seg_color[2], seg_color[1], seg_color[0]]) / 255)
        xyzs = np.array(xyzs)
        rgbs = np.array(rgbs)

        self.pcd.points = o3d.utility.Vector3dVector(xyzs)
        self.pcd.colors = o3d.utility.Vector3dVector(rgbs)

        o3d.visualization.draw_geometries([self.pcd])

    def visualize_segmentation_on_image(self, p3d_segs, image_path, feat_path):
        vis_color = generate_color_dic(n_seg=1024)
        feat_file = h5py.File(feat_path, 'r')

        cv2.namedWindow('img', cv2.WINDOW_NORMAL)
        for mi in sorted(self.images.keys()):
            im = self.images[mi]
            im_name = im.name
            p3d_ids = im.point3D_ids
            p2ds = feat_file[im_name]['keypoints'][()]
            image = cv2.imread(osp.join(image_path, im_name))
            print('img_name: ', im_name)

            sems = []
            for pid in p3d_ids:
                if pid in p3d_segs.keys():
                    sems.append(p3d_segs[pid] + 1)
                else:
                    sems.append(0)
            sems = np.array(sems)

            sems = np.array(sems)
            mask = sems > 0
            img_seg = vis_seg_point(img=image, kpts=p2ds[mask], segs=sems[mask], seg_color=vis_color)

            cv2.imshow('img', img_seg)
            key = cv2.waitKey(0)
            if key == ord('q'):
                exit(0)
            elif key == ord('r'):
                # cv2.destroyAllWindows()
                return

    def extract_query_p3ds(self, log_fn, feat_fn, save_fn=None):
        if save_fn is not None:
            if osp.isfile(save_fn):
                print('{:s} exists'.format(save_fn))
                return

        loc_log = np.load(log_fn, allow_pickle=True)[()]
        fns = loc_log.keys()
        feat_file = h5py.File(feat_fn, 'r')

        out = {}
        for fn in tqdm(fns, total=len(fns)):
            matched_kpts = loc_log[fn]['keypoints_query']
            matched_p3ds = loc_log[fn]['points3D_ids']

            query_kpts = feat_file[fn]['keypoints'][()].astype(float)
            query_p3d_ids = np.zeros(shape=(query_kpts.shape[0],), dtype=int) - 1
            print('matched kpts: {}, query kpts: {}'.format(matched_kpts.shape[0], query_kpts.shape[0]))

            if matched_kpts.shape[0] > 0:
                # [M, 2, 1] - [1, 2, N] = [M, 2, N]
                dist = torch.from_numpy(matched_kpts).unsqueeze(-1) - torch.from_numpy(
                    query_kpts.transpose()).unsqueeze(0)
                dist = torch.sum(dist ** 2, dim=1)  # [M, N]
                values, idxes = torch.topk(dist, dim=1, largest=False, k=1)  # find the matches kpts with dist of 0
                values = values.numpy()
                idxes = idxes.numpy()
                for i in range(values.shape[0]):
                    if values[i, 0] < 1:
                        query_p3d_ids[idxes[i, 0]] = matched_p3ds[i]

            out[fn] = query_p3d_ids
        np.save(save_fn, out)
        feat_file.close()

    def compute_mean_scale_p3ds(self, min_obs=5, save_fn=None):
        if save_fn is not None:
            if osp.isfile(save_fn):
                with open(save_fn, 'r') as f:
                    lines = f.readlines()
                    l = lines[0].strip().split()
                    self.mean_xyz = np.array([float(v) for v in l[:3]])
                    self.scale_xyz = np.array([float(v) for v in l[3:]])
                print('{} exists'.format(save_fn))
                return

        all_xyzs = []
        for pid in self.points3D.keys():
            p3d = self.points3D[pid]
            obs = len(p3d.point2D_idxs)
            if obs < min_obs:
                continue
            all_xyzs.append(p3d.xyz)

        all_xyzs = np.array(all_xyzs)
        mean_xyz = np.ceil(np.mean(all_xyzs, axis=0))
        all_xyz_ = all_xyzs - mean_xyz

        dx = np.max(abs(all_xyz_[:, 0]))
        dy = np.max(abs(all_xyz_[:, 1]))
        dz = np.max(abs(all_xyz_[:, 2]))
        scale_xyz = np.ceil(np.array([dx, dy, dz], dtype=float).reshape(3, ))
        scale_xyz[scale_xyz < 1] = 1
        scale_xyz[scale_xyz == 0] = 1

        # self.mean_xyz = mean_xyz
        # self.scale_xyz = scale_xyz
        #
        # if save_fn is not None:
        #     with open(save_fn, 'w') as f:
        #         text = '{:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'.format(mean_xyz[0], mean_xyz[1], mean_xyz[2],
        #                                                                   scale_xyz[0], scale_xyz[1], scale_xyz[2])
        #         f.write(text + '\n')

    def compute_statics_inlier(self, xyz, nb_neighbors=20, std_ratio=2.0):
        pcd = o3d.geometry.PointCloud()
        pcd.points = o3d.utility.Vector3dVector(xyz)

        new_pcd, inlier_ids = pcd.remove_statistical_outlier(nb_neighbors=nb_neighbors, std_ratio=std_ratio)
        return inlier_ids

    def export_features_to_directory(self, feat_fn, save_dir, with_descriptors=True):
        def print_grp_name(grp_name, object):
            try:
                n_subgroups = len(object.keys())
            except:
                n_subgroups = 0
                dataset_list.append(object.name)

        dataset_list = []
        feat_file = h5py.File(feat_fn, 'r')
        feat_file.visititems(print_grp_name)
        all_keys = []
        os.makedirs(save_dir, exist_ok=True)
        for fn in dataset_list:
            subs = fn[1:].split('/')[:-1]  # remove the first '/'
            subs = '/'.join(map(str, subs))
            if subs in all_keys:
                continue
            all_keys.append(subs)

        for fn in tqdm(all_keys, total=len(all_keys)):
            feat = feat_file[fn]
            data = {
                # 'descriptors': feat['descriptors'][()].transpose(),
                'scores': feat['scores'][()],
                'keypoints': feat['keypoints'][()],
                'image_size': feat['image_size'][()]
            }
            np.save(osp.join(save_dir, fn.replace('/', '+')), data)
        feat_file.close()

    def get_intrinsics_from_camera(self, camera):
        if camera.model in ("SIMPLE_PINHOLE", "SIMPLE_RADIAL", "RADIAL"):
            fx = fy = camera.params[0]
            cx = camera.params[1]
            cy = camera.params[2]
        elif camera.model in ("PINHOLE", "OPENCV", "OPENCV_FISHEYE", "FULL_OPENCV"):
            fx = camera.params[0]
            fy = camera.params[1]
            cx = camera.params[2]
            cy = camera.params[3]
        else:
            raise Exception("Camera model not supported")

        # intrinsics
        K = np.identity(3)
        K[0, 0] = fx
        K[1, 1] = fy
        K[0, 2] = cx
        K[1, 2] = cy
        return K

    def compress_map_by_projection_v2(self, vrf_path, point3d_desc_path, vrf_frames=1, covisible_frames=20, radius=20,
                                      nkpts=-1, save_dir=None):
        def sparsify_by_grid(h, w, uvs, scores):
            nh = np.ceil(h / radius).astype(int)
            nw = np.ceil(w / radius).astype(int)
            grid = {}
            for ip in range(uvs.shape[0]):
                p = uvs[ip]
                iw = np.rint(p[0] // radius).astype(int)
                ih = np.rint(p[1] // radius).astype(int)
                idx = ih * nw + iw
                if idx in grid.keys():
                    if scores[ip] <= grid[idx]['score']:
                        continue
                    else:
                        grid[idx]['score'] = scores[ip]
                        grid[idx]['ip'] = ip
                else:
                    grid[idx] = {
                        'score': scores[ip],
                        'ip': ip
                    }

            retained_ips = [grid[v]['ip'] for v in grid.keys()]
            retained_ips = np.array(retained_ips)
            return retained_ips

        def choose_valid_p3ds(current_frame_id, covisible_frame_ids, reserved_images):
            curr_p3d_ids = []
            curr_xyzs = []
            for pid in self.images[current_frame_id].point3D_ids:
                if pid == -1:
                    continue
                if pid not in self.points3D.keys():
                    continue
                curr_p3d_ids.append(pid)
                curr_xyzs.append(self.points3D[pid].xyz)
            curr_xyzs = np.array(curr_xyzs)  # [N, 3]
            curr_xyzs_homo = np.hstack([curr_xyzs, np.ones((curr_xyzs.shape[0], 1), dtype=curr_xyzs.dtype)])  # [N, 4]

            curr_mask = np.array([True for mi in range(curr_xyzs.shape[0])])  # keep all at first
            for iim in covisible_frame_ids:
                cam_id = self.images[iim].camera_id
                width = self.cameras[cam_id].width
                height = self.cameras[cam_id].height
                qvec = self.images[iim].qvec
                tcw = self.images[iim].tvec
                Rcw = qvec2rotmat(qvec=qvec)
                Tcw = np.eye(4, dtype=float)
                Tcw[:3, :3] = Rcw
                Tcw[:3, 3] = tcw.reshape(3, )

                uvs = reserved_images[iim]['xys']
                K = self.get_intrinsics_from_camera(camera=self.cameras[cam_id])
                proj_xys = K @ (Tcw @ curr_xyzs_homo.transpose())[:3, :]  # [3, ]
                proj_xys = proj_xys.transpose()
                depth = proj_xys[:, 2]
                proj_xys[:, 0] = proj_xys[:, 0] / depth
                proj_xys[:, 1] = proj_xys[:, 1] / depth

                mask_in_image = (proj_xys[:, 0] >= 0) * (proj_xys[:, 0] < width) * (proj_xys[:, 1] >= 0) * (
                        proj_xys[:, 1] < height)
                mask_depth = proj_xys[:, 2] > 0

                dist_proj_uv = torch.from_numpy(proj_xys[:, :2])[..., None] - \
                               torch.from_numpy(uvs[:, :2].transpose())[None]
                dist_proj_uv = torch.sqrt(torch.sum(dist_proj_uv ** 2, dim=1))  # [N, M]
                min_dist = torch.min(dist_proj_uv, dim=1)[0].numpy()
                mask_close_to_img = (min_dist <= radius)

                mask = mask_in_image * mask_depth * mask_close_to_img  # p3ds to be discarded

                curr_mask = curr_mask * (1 - mask)

            chosen_p3d_ids = []
            for mi in range(curr_mask.shape[0]):
                if curr_mask[mi]:
                    chosen_p3d_ids.append(curr_p3d_ids[mi])

            return chosen_p3d_ids

        vrf_data = np.load(vrf_path, allow_pickle=True)[()]
        p3d_ids_in_vrf = []
        image_ids_in_vrf = []
        for sid in vrf_data.keys():
            svrf = vrf_data[sid]
            svrf_keys = [vi for vi in range(vrf_frames)]
            for vi in svrf_keys:
                if vi not in svrf.keys():
                    continue
                image_id = svrf[vi]['image_id']
                if image_id in image_ids_in_vrf:
                    continue
                image_ids_in_vrf.append(image_id)
                for pid in svrf[vi]['original_points3d']:
                    if pid in p3d_ids_in_vrf:
                        continue
                    p3d_ids_in_vrf.append(pid)

        print('Find {:d} images and {:d} 3D points in vrf'.format(len(image_ids_in_vrf), len(p3d_ids_in_vrf)))

        # first_vrf_images_covis = {}
        retained_image_ids = {}
        for frame_id in image_ids_in_vrf:
            observed = self.images[frame_id].point3D_ids
            xys = self.images[frame_id].xys
            covis = defaultdict(int)
            valid_xys = []
            valid_p3d_ids = []
            for xy, pid in zip(xys, observed):
                if pid == -1:
                    continue
                if pid not in self.points3D.keys():
                    continue
                valid_xys.append(xy)
                valid_p3d_ids.append(pid)
                for img_id in self.points3D[pid].image_ids:
                    covis[img_id] += 1

            retained_image_ids[frame_id] = {
                'xys': np.array(valid_xys),
                'p3d_ids': valid_p3d_ids,
            }

            print('Find {:d} valid connected frames'.format(len(covis.keys())))

            covis_ids = np.array(list(covis.keys()))
            covis_num = np.array([covis[i] for i in covis_ids])

            if len(covis_ids) <= covisible_frames:
                sel_covis_ids = covis_ids[np.argsort(-covis_num)]
            else:
                ind_top = np.argpartition(covis_num, -covisible_frames)
                ind_top = ind_top[-covisible_frames:]  # unsorted top k
                ind_top = ind_top[np.argsort(-covis_num[ind_top])]
                sel_covis_ids = [covis_ids[i] for i in ind_top]

            covis_frame_ids = [frame_id]
            for iim in sel_covis_ids:
                if iim == frame_id:
                    continue
                if iim in retained_image_ids.keys():
                    covis_frame_ids.append(iim)
                    continue

                chosen_p3d_ids = choose_valid_p3ds(current_frame_id=iim, covisible_frame_ids=covis_frame_ids,
                                                   reserved_images=retained_image_ids)
                if len(chosen_p3d_ids) == 0:
                    continue

                xys = []
                for xy, pid in zip(self.images[iim].xys, self.images[iim].point3D_ids):
                    if pid in chosen_p3d_ids:
                        xys.append(xy)
                xys = np.array(xys)

                covis_frame_ids.append(iim)
                retained_image_ids[iim] = {
                    'xys': xys,
                    'p3d_ids': chosen_p3d_ids,
                }

        new_images = {}
        new_point3Ds = {}
        new_cameras = {}
        for iim in retained_image_ids.keys():
            p3d_ids = retained_image_ids[iim]['p3d_ids']
            ''' this step reduces the performance
            for v in self.images[iim].point3D_ids:
                if v == -1 or v not in self.points3D:
                    continue
                if v in p3d_ids:
                    continue
                p3d_ids.append(v)
            '''

            xyzs = np.array([self.points3D[pid].xyz for pid in p3d_ids])
            obs = np.array([len(self.points3D[pid].point2D_idxs) for pid in p3d_ids])
            xys = self.images[iim].xys
            cam_id = self.images[iim].camera_id
            name = self.images[iim].name
            qvec = self.images[iim].qvec
            tvec = self.images[iim].tvec

            if nkpts > 0 and len(p3d_ids) > nkpts:
                proj_uvs = self.reproject(img_id=iim, xyzs=xyzs)
                width = self.cameras[cam_id].width
                height = self.cameras[cam_id].height
                sparsified_idxs = sparsify_by_grid(h=height, w=width, uvs=proj_uvs[:, :2], scores=obs)

                print('org / new kpts: ', len(p3d_ids), sparsified_idxs.shape)

                p3d_ids = [p3d_ids[k] for k in sparsified_idxs]

            new_images[iim] = Image(id=iim, qvec=qvec, tvec=tvec,
                                    camera_id=cam_id,
                                    name=name,
                                    xys=np.array([]),
                                    point3D_ids=np.array(p3d_ids))

            if cam_id not in new_cameras.keys():
                new_cameras[cam_id] = self.cameras[cam_id]

            for pid in p3d_ids:
                if pid in new_point3Ds.keys():
                    new_point3Ds[pid]['image_ids'].append(iim)
                else:
                    xyz = self.points3D[pid].xyz
                    rgb = self.points3D[pid].rgb
                    error = self.points3D[pid].error

                    new_point3Ds[pid] = {
                        'image_ids': [iim],
                        'rgb': rgb,
                        'xyz': xyz,
                        'error': error
                    }

        new_point3Ds_to_save = {}
        for pid in new_point3Ds.keys():
            image_ids = new_point3Ds[pid]['image_ids']
            if len(image_ids) == 0:
                continue
            xyz = new_point3Ds[pid]['xyz']
            rgb = new_point3Ds[pid]['rgb']
            error = new_point3Ds[pid]['error']

            new_point3Ds_to_save[pid] = Point3D(id=pid, xyz=xyz, rgb=rgb, error=error, image_ids=np.array(image_ids),
                                                point2D_idxs=np.array([]))

        print('Retain {:d}/{:d} images and {:d}/{:d} 3D points'.format(len(new_images), len(self.images),
                                                                       len(new_point3Ds), len(self.points3D)))

        if save_dir is not None:
            os.makedirs(save_dir, exist_ok=True)
            # write_images_binary(images=new_image_ids,
            #                     path_to_model_file=osp.join(save_dir, 'images.bin'))
            # write_points3d_binary(points3D=new_point3Ds,
            #                       path_to_model_file=osp.join(save_dir, 'points3D.bin'))
            write_compressed_images_binary(images=new_images,
                                           path_to_model_file=osp.join(save_dir, 'images.bin'))
            write_cameras_binary(cameras=new_cameras,
                                 path_to_model_file=osp.join(save_dir, 'cameras.bin'))
            write_compressed_points3d_binary(points3D=new_point3Ds_to_save,
                                             path_to_model_file=osp.join(save_dir, 'points3D.bin'))

            # Save 3d descriptors
            p3d_desc = np.load(point3d_desc_path, allow_pickle=True)[()]
            comp_p3d_desc = {}
            for k in new_point3Ds_to_save.keys():
                if k not in p3d_desc.keys():
                    print(k)
                    continue
                comp_p3d_desc[k] = deepcopy(p3d_desc[k])
            np.save(osp.join(save_dir, point3d_desc_path.split('/')[-1]), comp_p3d_desc)
            print('Save data to {:s}'.format(save_dir))


def process_dataset(dataset, dataset_dir, sfm_dir, save_dir, feature='sfd2', matcher='gml'):
    # dataset_dir = '/scratches/flyer_3/fx221/dataset'
    # sfm_dir = '/scratches/flyer_2/fx221/localization/outputs'  # your sfm results (cameras, images, points3D) and features
    # save_dir = '/scratches/flyer_3/fx221/exp/localizer'
    # local_feat = 'sfd2'
    # matcher = 'gml'
    # hloc_results_dir = '/scratches/flyer_2/fx221/exp/sgd2'

    # config_path = 'configs/datasets/CUED.yaml'
    # config_path = 'configs/datasets/7Scenes.yaml'
    # config_path = 'configs/datasets/12Scenes.yaml'
    # config_path = 'configs/datasets/CambridgeLandmarks.yaml'
    # config_path = 'configs/datasets/Aachen.yaml'

    # config_path = 'configs/datasets/Aria.yaml'
    # config_path = 'configs/datasets/DarwinRGB.yaml'
    # config_path = 'configs/datasets/ACUED.yaml'
    # config_path = 'configs/datasets/JesusCollege.yaml'
    # config_path = 'configs/datasets/CUED2Kings.yaml'

    config_path = 'configs/datasets/{:s}.yaml'.format(dataset)
    with open(config_path, 'rt') as f:
        configs = yaml.load(f, Loader=yaml.Loader)
    print(configs)

    dataset = configs['dataset']
    all_scenes = configs['scenes']
    for scene in all_scenes:
        n_cluster = configs[scene]['n_cluster']
        cluster_mode = configs[scene]['cluster_mode']
        cluster_method = configs[scene]['cluster_method']
        # if scene not in ['heads']:
        #     continue

        print('scene: ', scene, cluster_mode, cluster_method)
        # hloc_path = osp.join(hloc_root, dataset, scene)
        sfm_path = osp.join(sfm_dir, scene)
        save_path = osp.join(save_dir, feature + '-' + matcher, dataset, scene)

        n_vrf = 1
        n_cov = 30
        radius = 20
        n_kpts = 0

        if dataset in ['Aachen']:
            image_path = osp.join(dataset_dir, scene, 'images/images_upright')
            min_obs = 250
            filtering_outliers = True
            threshold = 0.2
            radius = 32

        elif dataset in ['CambridgeLandmarks', ]:
            image_path = osp.join(dataset_dir, scene)
            min_obs = 250
            filtering_outliers = True
            threshold = 0.2
            radius = 64
        elif dataset in ['Aria']:
            image_path = osp.join(dataset_dir, scene)
            min_obs = 150
            filtering_outliers = False
            threshold = 0.01
            radius = 15
        elif dataset in ['DarwinRGB']:
            image_path = osp.join(dataset_dir, scene)
            min_obs = 150
            filtering_outliers = True
            threshold = 0.2
            radius = 16
        elif dataset in ['ACUED']:
            image_path = osp.join(dataset_dir, scene)
            min_obs = 250
            filtering_outliers = True
            threshold = 0.2
            radius = 32
        elif dataset in ['7Scenes', '12Scenes']:
            image_path = osp.join(dataset_dir, scene)
            min_obs = 150
            filtering_outliers = False
            threshold = 0.01
            radius = 15
        else:
            image_path = osp.join(dataset_dir, scene)
            min_obs = 250
            filtering_outliers = True
            threshold = 0.2
            radius = 32

        # comp_map_sub_path = 'comp_model_n{:d}_{:s}_{:s}_vrf{:d}_cov{:d}_r{:d}_np{:d}_projection_v2'.format(n_cluster,
        #                                                                                                    cluster_mode,
        #                                                                                                    cluster_method,
        #                                                                                                    n_vrf,
        #                                                                                                    n_cov,
        #                                                                                                    radius,
        #                                                                                                    n_kpts)
        comp_map_sub_path = 'compress_model_{:s}'.format(cluster_method)
        seg_fn = osp.join(save_path,
                          'point3D_cluster_n{:d}_{:s}_{:s}.npy'.format(n_cluster, cluster_mode, cluster_method))
        vrf_fn = osp.join(save_path,
                          'point3D_vrf_n{:d}_{:s}_{:s}.npy'.format(n_cluster, cluster_mode, cluster_method))
        vrf_img_dir = osp.join(save_path,
                               'point3D_vrf_n{:d}_{:s}_{:s}'.format(n_cluster, cluster_mode, cluster_method))
        # p3d_query_fn = osp.join(save_path,
        #                         'point3D_query_n{:d}_{:s}_{:s}.npy'.format(n_cluster, cluster_mode, cluster_method))
        comp_map_path = osp.join(save_path, comp_map_sub_path)

        os.makedirs(save_path, exist_ok=True)

        rmap = RecMap()
        rmap.load_sfm_model(path=osp.join(sfm_path, 'sfm_{:s}-{:s}'.format(feature, matcher)))
        if filtering_outliers:
            rmap.remove_statics_outlier(nb_neighbors=20, std_ratio=2.0)

        # extract keypoints to train the recognition model (descriptors are recomputed from augmented db images)
        # we do this for ddp training (reading h5py file is not supported)
        rmap.export_features_to_directory(feat_fn=osp.join(sfm_path, 'feats-{:s}.h5'.format(feature)),
                                          save_dir=osp.join(save_path, 'feats'))  # only once for training

        rmap.cluster(k=n_cluster, mode=cluster_mode, save_fn=seg_fn, method=cluster_method, threshold=threshold)
        # rmap.visualize_3Dpoints()
        rmap.load_segmentation(path=seg_fn)
        # rmap.visualize_segmentation(p3d_segs=rmap.p3d_seg, points3D=rmap.points3D)

        # Assign each 3D point a desciptor and discard all 2D images and descriptors - for localization
        rmap.assign_point3D_descriptor(
            feature_fn=osp.join(sfm_path, 'feats-{:s}.h5'.format(feature)),
            save_fn=osp.join(save_path, 'point3D_desc.npy'.format(n_cluster, cluster_mode)),
            n_process=32)  # only once

        # exit(0)
        # rmap.visualize_segmentation_on_image(p3d_segs=rmap.p3d_seg, image_path=image_path, feat_path=feat_path)

        # for query images only - for evaluation
        # rmap.extract_query_p3ds(
        #     log_fn=osp.join(hloc_path, 'hloc_feats-{:s}_{:s}_loc.npy'.format(local_feat, matcher)),
        #     feat_fn=osp.join(sfm_path, 'feats-{:s}.h5'.format(local_feat)),
        #     save_fn=p3d_query_fn)
        # continue

        # up-to-date
        rmap.create_virtual_frame_3(
            save_fn=vrf_fn,
            save_vrf_dir=vrf_img_dir,
            image_root=image_path,
            show_time=5,
            min_cover_ratio=0.9,
            radius=radius,
            depth_scale=2.5,  # 1.2 by default
            min_obs=min_obs,
            n_vrf=10,
            covisible_frame=n_cov,
            ignored_cameras=[])

        # up-to-date
        rmap.compress_map_by_projection_v2(
            vrf_frames=n_vrf,
            vrf_path=vrf_fn,
            point3d_desc_path=osp.join(save_path, 'point3D_desc.npy'),
            save_dir=comp_map_path,
            covisible_frames=n_cov,
            radius=radius,
            nkpts=n_kpts,
        )

        # exit(0)
        # soft_link_compress_path = osp.join(save_path, 'compress_model_{:s}'.format(cluster_method))
        os.chdir(save_path)
        # if osp.isdir(soft_link_compress_path):
        #     os.unlink(soft_link_compress_path)
        # os.symlink(comp_map_sub_path, 'compress_model_{:s}'.format(cluster_method))
        # create a soft link of the full model for training
        if not osp.isdir('model'):
            os.symlink(osp.join(sfm_path, 'sfm_{:s}-{:s}'.format(feature, matcher)), '3D-models')


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--dataset', type=str, required=True, help='dataset name')
    parser.add_argument('--dataset_dir', type=str, required=True, help='dataset dir')
    parser.add_argument('--sfm_dir', type=str, required=True, help='sfm dir')
    parser.add_argument('--save_dir', type=str, required=True, help='dir to save the landmarks data')
    parser.add_argument('--feature', type=str, default='sfd2', help='feature name e.g., SP, SFD2')
    parser.add_argument('--matcher', type=str, default='gml', help='matcher name e.g., SG, LSG, gml')

    args = parser.parse_args()

    process_dataset(
        dataset=args.dataset,
        dataset_dir=args.dataset_dir,
        sfm_dir=args.sfm_dir,
        save_dir=args.save_dir,
        feature=args.feature,
        matcher=args.matcher)