Spaces:
Running
Running
File size: 6,136 Bytes
437b5f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import logging
import os
import cv2
import torch
from copy import deepcopy
import torch.nn.functional as F
from torchvision.transforms import ToTensor
import math
from alnet import ALNet
from soft_detect import DKD
import time
configs = {
'alike-t': {'c1': 8, 'c2': 16, 'c3': 32, 'c4': 64, 'dim': 64, 'single_head': True, 'radius': 2,
'model_path': os.path.join(os.path.split(__file__)[0], 'models', 'alike-t.pth')},
'alike-s': {'c1': 8, 'c2': 16, 'c3': 48, 'c4': 96, 'dim': 96, 'single_head': True, 'radius': 2,
'model_path': os.path.join(os.path.split(__file__)[0], 'models', 'alike-s.pth')},
'alike-n': {'c1': 16, 'c2': 32, 'c3': 64, 'c4': 128, 'dim': 128, 'single_head': True, 'radius': 2,
'model_path': os.path.join(os.path.split(__file__)[0], 'models', 'alike-n.pth')},
'alike-l': {'c1': 32, 'c2': 64, 'c3': 128, 'c4': 128, 'dim': 128, 'single_head': False, 'radius': 2,
'model_path': os.path.join(os.path.split(__file__)[0], 'models', 'alike-l.pth')},
}
class ALike(ALNet):
def __init__(self,
# ================================== feature encoder
c1: int = 32, c2: int = 64, c3: int = 128, c4: int = 128, dim: int = 128,
single_head: bool = False,
# ================================== detect parameters
radius: int = 2,
top_k: int = 500, scores_th: float = 0.5,
n_limit: int = 5000,
device: str = 'cpu',
model_path: str = ''
):
super().__init__(c1, c2, c3, c4, dim, single_head)
self.radius = radius
self.top_k = top_k
self.n_limit = n_limit
self.scores_th = scores_th
self.dkd = DKD(radius=self.radius, top_k=self.top_k,
scores_th=self.scores_th, n_limit=self.n_limit)
self.device = device
if model_path != '':
state_dict = torch.load(model_path, self.device)
self.load_state_dict(state_dict)
self.to(self.device)
self.eval()
logging.info(f'Loaded model parameters from {model_path}')
logging.info(
f"Number of model parameters: {sum(p.numel() for p in self.parameters() if p.requires_grad) / 1e3}KB")
def extract_dense_map(self, image, ret_dict=False):
# ====================================================
# check image size, should be integer multiples of 2^5
# if it is not a integer multiples of 2^5, padding zeros
device = image.device
b, c, h, w = image.shape
h_ = math.ceil(h / 32) * 32 if h % 32 != 0 else h
w_ = math.ceil(w / 32) * 32 if w % 32 != 0 else w
if h_ != h:
h_padding = torch.zeros(b, c, h_ - h, w, device=device)
image = torch.cat([image, h_padding], dim=2)
if w_ != w:
w_padding = torch.zeros(b, c, h_, w_ - w, device=device)
image = torch.cat([image, w_padding], dim=3)
# ====================================================
scores_map, descriptor_map = super().forward(image)
# ====================================================
if h_ != h or w_ != w:
descriptor_map = descriptor_map[:, :, :h, :w]
scores_map = scores_map[:, :, :h, :w] # Bx1xHxW
# ====================================================
# BxCxHxW
descriptor_map = torch.nn.functional.normalize(descriptor_map, p=2, dim=1)
if ret_dict:
return {'descriptor_map': descriptor_map, 'scores_map': scores_map, }
else:
return descriptor_map, scores_map
def forward(self, img, image_size_max=99999, sort=False, sub_pixel=False):
"""
:param img: np.array HxWx3, RGB
:param image_size_max: maximum image size, otherwise, the image will be resized
:param sort: sort keypoints by scores
:param sub_pixel: whether to use sub-pixel accuracy
:return: a dictionary with 'keypoints', 'descriptors', 'scores', and 'time'
"""
H, W, three = img.shape
assert three == 3, "input image shape should be [HxWx3]"
# ==================== image size constraint
image = deepcopy(img)
max_hw = max(H, W)
if max_hw > image_size_max:
ratio = float(image_size_max / max_hw)
image = cv2.resize(image, dsize=None, fx=ratio, fy=ratio)
# ==================== convert image to tensor
image = torch.from_numpy(image).to(self.device).to(torch.float32).permute(2, 0, 1)[None] / 255.0
# ==================== extract keypoints
start = time.time()
with torch.no_grad():
descriptor_map, scores_map = self.extract_dense_map(image)
keypoints, descriptors, scores, _ = self.dkd(scores_map, descriptor_map,
sub_pixel=sub_pixel)
keypoints, descriptors, scores = keypoints[0], descriptors[0], scores[0]
keypoints = (keypoints + 1) / 2 * keypoints.new_tensor([[W - 1, H - 1]])
if sort:
indices = torch.argsort(scores, descending=True)
keypoints = keypoints[indices]
descriptors = descriptors[indices]
scores = scores[indices]
end = time.time()
return {'keypoints': keypoints.cpu().numpy(),
'descriptors': descriptors.cpu().numpy(),
'scores': scores.cpu().numpy(),
'scores_map': scores_map.cpu().numpy(),
'time': end - start, }
if __name__ == '__main__':
import numpy as np
from thop import profile
net = ALike(c1=32, c2=64, c3=128, c4=128, dim=128, single_head=False)
image = np.random.random((640, 480, 3)).astype(np.float32)
flops, params = profile(net, inputs=(image, 9999, False), verbose=False)
print('{:<30} {:<8} GFLops'.format('Computational complexity: ', flops / 1e9))
print('{:<30} {:<8} KB'.format('Number of parameters: ', params / 1e3))
|