File size: 6,448 Bytes
437b5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import copy
import os
import cv2
import glob
import logging
import argparse
import numpy as np
from tqdm import tqdm
from alike import ALike, configs


class ImageLoader(object):
    def __init__(self, filepath: str):
        self.N = 3000
        if filepath.startswith('camera'):
            camera = int(filepath[6:])
            self.cap = cv2.VideoCapture(camera)
            if not self.cap.isOpened():
                raise IOError(f"Can't open camera {camera}!")
            logging.info(f'Opened camera {camera}')
            self.mode = 'camera'
        elif os.path.exists(filepath):
            if os.path.isfile(filepath):
                self.cap = cv2.VideoCapture(filepath)
                if not self.cap.isOpened():
                    raise IOError(f"Can't open video {filepath}!")
                rate = self.cap.get(cv2.CAP_PROP_FPS)
                self.N = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) - 1
                duration = self.N / rate
                logging.info(f'Opened video {filepath}')
                logging.info(f'Frames: {self.N}, FPS: {rate}, Duration: {duration}s')
                self.mode = 'video'
            else:
                self.images = glob.glob(os.path.join(filepath, '*.png')) + \
                              glob.glob(os.path.join(filepath, '*.jpg')) + \
                              glob.glob(os.path.join(filepath, '*.ppm'))
                self.images.sort()
                self.N = len(self.images)
                logging.info(f'Loading {self.N} images')
                self.mode = 'images'
        else:
            raise IOError('Error filepath (camerax/path of images/path of videos): ', filepath)

    def __getitem__(self, item):
        if self.mode == 'camera' or self.mode == 'video':
            if item > self.N:
                return None
            ret, img = self.cap.read()
            if not ret:
                raise "Can't read image from camera"
            if self.mode == 'video':
                self.cap.set(cv2.CAP_PROP_POS_FRAMES, item)
        elif self.mode == 'images':
            filename = self.images[item]
            img = cv2.imread(filename)
            if img is None:
                raise Exception('Error reading image %s' % filename)        
        return img

    def __len__(self):
        return self.N


class SimpleTracker(object):
    def __init__(self):
        self.pts_prev = None
        self.desc_prev = None

    def update(self, img, pts, desc):
        N_matches = 0
        if self.pts_prev is None:
            self.pts_prev = pts
            self.desc_prev = desc

            out = copy.deepcopy(img)
            for pt1 in pts:
                p1 = (int(round(pt1[0])), int(round(pt1[1])))
                cv2.circle(out, p1, 1, (0, 0, 255), -1, lineType=16)
        else:
            matches = self.mnn_mather(self.desc_prev, desc)
            mpts1, mpts2 = self.pts_prev[matches[:, 0]], pts[matches[:, 1]]
            N_matches = len(matches)

            out = copy.deepcopy(img)
            for pt1, pt2 in zip(mpts1, mpts2):
                p1 = (int(round(pt1[0])), int(round(pt1[1])))
                p2 = (int(round(pt2[0])), int(round(pt2[1])))
                cv2.line(out, p1, p2, (0, 255, 0), lineType=16)
                cv2.circle(out, p2, 1, (0, 0, 255), -1, lineType=16)

            self.pts_prev = pts
            self.desc_prev = desc

        return out, N_matches

    def mnn_mather(self, desc1, desc2):
        sim = desc1 @ desc2.transpose()
        sim[sim < 0.9] = 0
        nn12 = np.argmax(sim, axis=1)
        nn21 = np.argmax(sim, axis=0)
        ids1 = np.arange(0, sim.shape[0])
        mask = (ids1 == nn21[nn12])
        matches = np.stack([ids1[mask], nn12[mask]])
        return matches.transpose()


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='ALike Demo.')
    parser.add_argument('input', type=str, default='',
                        help='Image directory or movie file or "camera0" (for webcam0).')
    parser.add_argument('--model', choices=['alike-t', 'alike-s', 'alike-n', 'alike-l'], default="alike-t",
                        help="The model configuration")
    parser.add_argument('--device', type=str, default='cuda', help="Running device (default: cuda).")
    parser.add_argument('--top_k', type=int, default=-1,
                        help='Detect top K keypoints. -1 for threshold based mode, >0 for top K mode. (default: -1)')
    parser.add_argument('--scores_th', type=float, default=0.2,
                        help='Detector score threshold (default: 0.2).')
    parser.add_argument('--n_limit', type=int, default=5000,
                        help='Maximum number of keypoints to be detected (default: 5000).')
    parser.add_argument('--no_display', action='store_true',
                        help='Do not display images to screen. Useful if running remotely (default: False).')
    parser.add_argument('--no_sub_pixel', action='store_true',
                        help='Do not detect sub-pixel keypoints (default: False).')
    args = parser.parse_args()

    logging.basicConfig(level=logging.INFO)

    image_loader = ImageLoader(args.input)
    model = ALike(**configs[args.model],
                  device=args.device,
                  top_k=args.top_k,
                  scores_th=args.scores_th,
                  n_limit=args.n_limit)
    tracker = SimpleTracker()

    if not args.no_display:
        logging.info("Press 'q' to stop!")
        cv2.namedWindow(args.model)

    runtime = []
    progress_bar = tqdm(image_loader)
    for img in progress_bar:
        if img is None:
            break
        
        img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        pred = model(img_rgb, sub_pixel=not args.no_sub_pixel)
        kpts = pred['keypoints']
        desc = pred['descriptors']
        runtime.append(pred['time'])

        out, N_matches = tracker.update(img, kpts, desc)

        ave_fps = (1. / np.stack(runtime)).mean()
        status = f"Fps:{ave_fps:.1f}, Keypoints/Matches: {len(kpts)}/{N_matches}"
        progress_bar.set_description(status)

        if not args.no_display:
            cv2.setWindowTitle(args.model, args.model + ': ' + status)
            cv2.imshow(args.model, out)
            if cv2.waitKey(1) == ord('q'):
                break

    logging.info('Finished!')
    if not args.no_display:
        logging.info('Press any key to exit!')
        cv2.waitKey()