File size: 8,735 Bytes
437b5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import torch
from torch import nn
import torch.nn.functional as F


# coordinates system
#  ------------------------------>  [ x: range=-1.0~1.0; w: range=0~W ]
#  | -----------------------------
#  | |                           |
#  | |                           |
#  | |                           |
#  | |         image             |
#  | |                           |
#  | |                           |
#  | |                           |
#  | |---------------------------|
#  v
# [ y: range=-1.0~1.0; h: range=0~H ]

def simple_nms(scores, nms_radius: int):
    """ Fast Non-maximum suppression to remove nearby points """
    assert (nms_radius >= 0)

    def max_pool(x):
        return torch.nn.functional.max_pool2d(
            x, kernel_size=nms_radius * 2 + 1, stride=1, padding=nms_radius)

    zeros = torch.zeros_like(scores)
    max_mask = scores == max_pool(scores)

    for _ in range(2):
        supp_mask = max_pool(max_mask.float()) > 0
        supp_scores = torch.where(supp_mask, zeros, scores)
        new_max_mask = supp_scores == max_pool(supp_scores)
        max_mask = max_mask | (new_max_mask & (~supp_mask))
    return torch.where(max_mask, scores, zeros)


def sample_descriptor(descriptor_map, kpts, bilinear_interp=False):
    """
    :param descriptor_map: BxCxHxW
    :param kpts: list, len=B, each is Nx2 (keypoints) [h,w]
    :param bilinear_interp: bool, whether to use bilinear interpolation
    :return: descriptors: list, len=B, each is NxD
    """
    batch_size, channel, height, width = descriptor_map.shape

    descriptors = []
    for index in range(batch_size):
        kptsi = kpts[index]  # Nx2,(x,y)

        if bilinear_interp:
            descriptors_ = torch.nn.functional.grid_sample(descriptor_map[index].unsqueeze(0), kptsi.view(1, 1, -1, 2),
                                                           mode='bilinear', align_corners=True)[0, :, 0, :]  # CxN
        else:
            kptsi = (kptsi + 1) / 2 * kptsi.new_tensor([[width - 1, height - 1]])
            kptsi = kptsi.long()
            descriptors_ = descriptor_map[index, :, kptsi[:, 1], kptsi[:, 0]]  # CxN

        descriptors_ = torch.nn.functional.normalize(descriptors_, p=2, dim=0)
        descriptors.append(descriptors_.t())

    return descriptors


class DKD(nn.Module):
    def __init__(self, radius=2, top_k=0, scores_th=0.2, n_limit=20000):
        """
        Args:
            radius: soft detection radius, kernel size is (2 * radius + 1)
            top_k: top_k > 0: return top k keypoints
            scores_th: top_k <= 0 threshold mode:  scores_th > 0: return keypoints with scores>scores_th
                                                   else: return keypoints with scores > scores.mean()
            n_limit: max number of keypoint in threshold mode
        """
        super().__init__()
        self.radius = radius
        self.top_k = top_k
        self.scores_th = scores_th
        self.n_limit = n_limit
        self.kernel_size = 2 * self.radius + 1
        self.temperature = 0.1  # tuned temperature
        self.unfold = nn.Unfold(kernel_size=self.kernel_size, padding=self.radius)

        # local xy grid
        x = torch.linspace(-self.radius, self.radius, self.kernel_size)
        # (kernel_size*kernel_size) x 2 : (w,h)
        self.hw_grid = torch.stack(torch.meshgrid([x, x])).view(2, -1).t()[:, [1, 0]]

    def detect_keypoints(self, scores_map, sub_pixel=True):
        b, c, h, w = scores_map.shape
        scores_nograd = scores_map.detach()
        # nms_scores = simple_nms(scores_nograd, self.radius)
        nms_scores = simple_nms(scores_nograd, 2)

        # remove border
        nms_scores[:, :, :self.radius + 1, :] = 0
        nms_scores[:, :, :, :self.radius + 1] = 0
        nms_scores[:, :, h - self.radius:, :] = 0
        nms_scores[:, :, :, w - self.radius:] = 0

        # detect keypoints without grad
        if self.top_k > 0:
            topk = torch.topk(nms_scores.view(b, -1), self.top_k)
            indices_keypoints = topk.indices  # B x top_k
        else:
            if self.scores_th > 0:
                masks = nms_scores > self.scores_th
                if masks.sum() == 0:
                    th = scores_nograd.reshape(b, -1).mean(dim=1)  # th = self.scores_th
                    masks = nms_scores > th.reshape(b, 1, 1, 1)
            else:
                th = scores_nograd.reshape(b, -1).mean(dim=1)  # th = self.scores_th
                masks = nms_scores > th.reshape(b, 1, 1, 1)
            masks = masks.reshape(b, -1)

            indices_keypoints = []  # list, B x (any size)
            scores_view = scores_nograd.reshape(b, -1)
            for mask, scores in zip(masks, scores_view):
                indices = mask.nonzero(as_tuple=False)[:, 0]
                if len(indices) > self.n_limit:
                    kpts_sc = scores[indices]
                    sort_idx = kpts_sc.sort(descending=True)[1]
                    sel_idx = sort_idx[:self.n_limit]
                    indices = indices[sel_idx]
                indices_keypoints.append(indices)

        keypoints = []
        scoredispersitys = []
        kptscores = []
        if sub_pixel:
            # detect soft keypoints with grad backpropagation
            patches = self.unfold(scores_map)  # B x (kernel**2) x (H*W)
            self.hw_grid = self.hw_grid.to(patches)  # to device
            for b_idx in range(b):
                patch = patches[b_idx].t()  # (H*W) x (kernel**2)
                indices_kpt = indices_keypoints[b_idx]  # one dimension vector, say its size is M
                patch_scores = patch[indices_kpt]  # M x (kernel**2)

                # max is detached to prevent undesired backprop loops in the graph
                max_v = patch_scores.max(dim=1).values.detach()[:, None]
                x_exp = ((patch_scores - max_v) / self.temperature).exp()  # M * (kernel**2), in [0, 1]

                # \frac{ \sum{(i,j) \times \exp(x/T)} }{ \sum{\exp(x/T)} }
                xy_residual = x_exp @ self.hw_grid / x_exp.sum(dim=1)[:, None]  # Soft-argmax, Mx2

                hw_grid_dist2 = torch.norm((self.hw_grid[None, :, :] - xy_residual[:, None, :]) / self.radius,
                                           dim=-1) ** 2
                scoredispersity = (x_exp * hw_grid_dist2).sum(dim=1) / x_exp.sum(dim=1)

                # compute result keypoints
                keypoints_xy_nms = torch.stack([indices_kpt % w, indices_kpt // w], dim=1)  # Mx2
                keypoints_xy = keypoints_xy_nms + xy_residual
                keypoints_xy = keypoints_xy / keypoints_xy.new_tensor(
                    [w - 1, h - 1]) * 2 - 1  # (w,h) -> (-1~1,-1~1)

                kptscore = torch.nn.functional.grid_sample(scores_map[b_idx].unsqueeze(0),
                                                           keypoints_xy.view(1, 1, -1, 2),
                                                           mode='bilinear', align_corners=True)[0, 0, 0, :]  # CxN

                keypoints.append(keypoints_xy)
                scoredispersitys.append(scoredispersity)
                kptscores.append(kptscore)
        else:
            for b_idx in range(b):
                indices_kpt = indices_keypoints[b_idx]  # one dimension vector, say its size is M
                keypoints_xy_nms = torch.stack([indices_kpt % w, indices_kpt // w], dim=1)  # Mx2
                keypoints_xy = keypoints_xy_nms / keypoints_xy_nms.new_tensor(
                    [w - 1, h - 1]) * 2 - 1  # (w,h) -> (-1~1,-1~1)
                kptscore = torch.nn.functional.grid_sample(scores_map[b_idx].unsqueeze(0),
                                                           keypoints_xy.view(1, 1, -1, 2),
                                                           mode='bilinear', align_corners=True)[0, 0, 0, :]  # CxN
                keypoints.append(keypoints_xy)
                scoredispersitys.append(None)
                kptscores.append(kptscore)

        return keypoints, scoredispersitys, kptscores

    def forward(self, scores_map, descriptor_map, sub_pixel=False):
        """
        :param scores_map:  Bx1xHxW
        :param descriptor_map: BxCxHxW
        :param sub_pixel: whether to use sub-pixel keypoint detection
        :return: kpts: list[Nx2,...]; kptscores: list[N,....] normalised position: -1.0 ~ 1.0
        """
        keypoints, scoredispersitys, kptscores = self.detect_keypoints(scores_map,
                                                                       sub_pixel)

        descriptors = sample_descriptor(descriptor_map, keypoints, sub_pixel)

        # keypoints: B M 2
        # descriptors: B M D
        # scoredispersitys:
        return keypoints, descriptors, kptscores, scoredispersitys