File size: 6,936 Bytes
437b5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from typing import Tuple

import numpy as np
import torch


def to_homogeneous(points):
    """Convert N-dimensional points to homogeneous coordinates.
    Args:
        points: torch.Tensor or numpy.ndarray with size (..., N).
    Returns:
        A torch.Tensor or numpy.ndarray with size (..., N+1).
    """
    if isinstance(points, torch.Tensor):
        pad = points.new_ones(points.shape[:-1] + (1,))
        return torch.cat([points, pad], dim=-1)
    elif isinstance(points, np.ndarray):
        pad = np.ones((points.shape[:-1] + (1,)), dtype=points.dtype)
        return np.concatenate([points, pad], axis=-1)
    else:
        raise ValueError


def from_homogeneous(points, eps=0.):
    """Remove the homogeneous dimension of N-dimensional points.
    Args:
        points: torch.Tensor or numpy.ndarray with size (..., N+1).
    Returns:
        A torch.Tensor or numpy ndarray with size (..., N).
    """
    return points[..., :-1] / (points[..., -1:] + eps)


def skew_symmetric(v):
    """Create a skew-symmetric matrix from a (batched) vector of size (..., 3).
    """
    z = torch.zeros_like(v[..., 0])
    M = torch.stack([
        z, -v[..., 2], v[..., 1],
        v[..., 2], z, -v[..., 0],
        -v[..., 1], v[..., 0], z,
    ], dim=-1).reshape(v.shape[:-1] + (3, 3))
    return M


def T_to_E(T):
    """Convert batched poses (..., 4, 4) to batched essential matrices."""
    return skew_symmetric(T[..., :3, 3]) @ T[..., :3, :3]


def warp_points_torch(points, H, inverse=True):
    """
    Warp a list of points with the INVERSE of the given homography.
    The inverse is used to be coherent with tf.contrib.image.transform
    Arguments:
        points: batched list of N points, shape (B, N, 2).
        homography: batched or not (shapes (B, 8) and (8,) respectively).
    Returns: a Tensor of shape (B, N, 2) containing the new coordinates of the warped points.
    """
    # H = np.expand_dims(homography, axis=0) if len(homography.shape) == 1 else homography

    # Get the points to the homogeneous format
    points = to_homogeneous(points)

    # Apply the homography
    out_shape = tuple(list(H.shape[:-1]) + [3, 3])
    H_mat = torch.cat([H, torch.ones_like(H[..., :1])], axis=-1).reshape(out_shape)
    if inverse:
        H_mat = torch.inverse(H_mat)
    warped_points = torch.einsum('...nj,...ji->...ni', points, H_mat.transpose(-2, -1))

    warped_points = from_homogeneous(warped_points, eps=1e-5)

    return warped_points


def seg_equation(segs):
    # calculate list of start, end and midpoints points from both lists
    start_points, end_points = to_homogeneous(segs[..., 0, :]), to_homogeneous(segs[..., 1, :])
    # Compute the line equations as ax + by + c = 0 , where x^2 + y^2 = 1
    lines = torch.cross(start_points, end_points, dim=-1)
    lines_norm = (torch.sqrt(lines[..., 0] ** 2 + lines[..., 1] ** 2)[..., None])
    assert torch.all(lines_norm > 0), 'Error: trying to compute the equation of a line with a single point'
    lines = lines / lines_norm
    return lines


def is_inside_img(pts: torch.Tensor, img_shape: Tuple[int, int]):
    h, w = img_shape
    return (pts >= 0).all(dim=-1) & (pts[..., 0] < w) & (pts[..., 1] < h) & (~torch.isinf(pts).any(dim=-1))


def shrink_segs_to_img(segs: torch.Tensor, img_shape: Tuple[int, int]) -> torch.Tensor:
    """
    Shrink an array of segments to fit inside the image.
    :param segs: The tensor of segments with shape (N, 2, 2)
    :param img_shape: The image shape in format (H, W)
    """
    EPS = 1e-4
    device = segs.device
    w, h = img_shape[1], img_shape[0]
    # Project the segments to the reference image
    segs = segs.clone()
    eqs = seg_equation(segs)
    x0, y0 = torch.tensor([1., 0, 0.], device=device), torch.tensor([0., 1, 0], device=device)
    x0 = x0.repeat(eqs.shape[:-1] + (1,))
    y0 = y0.repeat(eqs.shape[:-1] + (1,))
    pt_x0s = torch.cross(eqs, x0, dim=-1)
    pt_x0s = pt_x0s[..., :-1] / pt_x0s[..., None, -1]
    pt_x0s_valid = is_inside_img(pt_x0s, img_shape)
    pt_y0s = torch.cross(eqs, y0, dim=-1)
    pt_y0s = pt_y0s[..., :-1] / pt_y0s[..., None, -1]
    pt_y0s_valid = is_inside_img(pt_y0s, img_shape)

    xW, yH = torch.tensor([1., 0, EPS - w], device=device), torch.tensor([0., 1, EPS - h], device=device)
    xW = xW.repeat(eqs.shape[:-1] + (1,))
    yH = yH.repeat(eqs.shape[:-1] + (1,))
    pt_xWs = torch.cross(eqs, xW, dim=-1)
    pt_xWs = pt_xWs[..., :-1] / pt_xWs[..., None, -1]
    pt_xWs_valid = is_inside_img(pt_xWs, img_shape)
    pt_yHs = torch.cross(eqs, yH, dim=-1)
    pt_yHs = pt_yHs[..., :-1] / pt_yHs[..., None, -1]
    pt_yHs_valid = is_inside_img(pt_yHs, img_shape)

    # If the X coordinate of the first endpoint is out
    mask = (segs[..., 0, 0] < 0) & pt_x0s_valid
    segs[mask, 0, :] = pt_x0s[mask]
    mask = (segs[..., 0, 0] > (w - 1)) & pt_xWs_valid
    segs[mask, 0, :] = pt_xWs[mask]
    # If the X coordinate of the second endpoint is out
    mask = (segs[..., 1, 0] < 0) & pt_x0s_valid
    segs[mask, 1, :] = pt_x0s[mask]
    mask = (segs[:, 1, 0] > (w - 1)) & pt_xWs_valid
    segs[mask, 1, :] = pt_xWs[mask]
    # If the Y coordinate of the first endpoint is out
    mask = (segs[..., 0, 1] < 0) & pt_y0s_valid
    segs[mask, 0, :] = pt_y0s[mask]
    mask = (segs[..., 0, 1] > (h - 1)) & pt_yHs_valid
    segs[mask, 0, :] = pt_yHs[mask]
    # If the Y coordinate of the second endpoint is out
    mask = (segs[..., 1, 1] < 0) & pt_y0s_valid
    segs[mask, 1, :] = pt_y0s[mask]
    mask = (segs[..., 1, 1] > (h - 1)) & pt_yHs_valid
    segs[mask, 1, :] = pt_yHs[mask]

    assert torch.all(segs >= 0) and torch.all(segs[..., 0] < w) and torch.all(segs[..., 1] < h)
    return segs


def warp_lines_torch(lines, H, inverse=True, dst_shape: Tuple[int, int] = None) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    :param lines: A tensor of shape (B, N, 2, 2) where B is the batch size, N the number of lines.
    :param H: The homography used to convert the lines. batched or not (shapes (B, 8) and (8,) respectively).
    :param inverse: Whether to apply H or the inverse of H
    :param dst_shape:If provided, lines are trimmed to be inside the image
    """
    device = lines.device
    batch_size, n = lines.shape[:2]
    lines = warp_points_torch(lines.reshape(batch_size, -1, 2), H, inverse).reshape(lines.shape)

    if dst_shape is None:
        return lines, torch.ones(lines.shape[:-2], dtype=torch.bool, device=device)

    out_img = torch.any((lines < 0) | (lines >= torch.tensor(dst_shape[::-1], device=device)), -1)
    valid = ~out_img.all(-1)
    any_out_of_img = out_img.any(-1)
    lines_to_trim = valid & any_out_of_img

    for b in range(batch_size):
        lines_to_trim_mask_b = lines_to_trim[b]
        lines_to_trim_b = lines[b][lines_to_trim_mask_b]
        corrected_lines = shrink_segs_to_img(lines_to_trim_b, dst_shape)
        lines[b][lines_to_trim_mask_b] = corrected_lines

    return lines, valid