Spaces:
Running
Running
File size: 4,093 Bytes
437b5f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
from abc import ABCMeta, abstractmethod
import os
import h5py
import numpy as np
from tqdm import trange
from torch.multiprocessing import Pool,set_start_method
set_start_method('spawn',force=True)
import sys
ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../"))
sys.path.insert(0, ROOT_DIR)
from components import load_component
class BaseDumper(metaclass=ABCMeta):
def __init__(self,config):
self.config=config
self.img_seq=[]
self.dump_seq=[]#feature dump seq
@abstractmethod
def get_seqs(self):
raise NotImplementedError
@abstractmethod
def format_dump_folder(self):
raise NotImplementedError
@abstractmethod
def format_dump_data(self):
raise NotImplementedError
def initialize(self):
self.extractor=load_component('extractor',self.config['extractor']['name'],self.config['extractor'])
self.get_seqs()
self.format_dump_folder()
def extract(self,index):
img_path,dump_path=self.img_seq[index],self.dump_seq[index]
if not self.config['extractor']['overwrite'] and os.path.exists(dump_path):
return
kp, desc = self.extractor.run(img_path)
self.write_feature(kp,desc,dump_path)
def dump_feature(self):
print('Extrating features...')
self.num_img=len(self.dump_seq)
pool=Pool(self.config['extractor']['num_process'])
iteration_num=self.num_img//self.config['extractor']['num_process']
if self.num_img%self.config['extractor']['num_process']!=0:
iteration_num+=1
for index in trange(iteration_num):
indicies_list=range(index*self.config['extractor']['num_process'],min((index+1)*self.config['extractor']['num_process'],self.num_img))
pool.map(self.extract,indicies_list)
pool.close()
pool.join()
def write_feature(self,pts, desc, filename):
with h5py.File(filename, "w") as ifp:
ifp.create_dataset('keypoints', pts.shape, dtype=np.float32)
ifp.create_dataset('descriptors', desc.shape, dtype=np.float32)
ifp["keypoints"][:] = pts
ifp["descriptors"][:] = desc
def form_standard_dataset(self):
dataset_path=os.path.join(self.config['dataset_dump_dir'],self.config['data_name']+\
'_'+self.config['extractor']['name']+'_'+str(self.config['extractor']['num_kpt'])+'.hdf5')
pair_data_type=['K1','K2','R','T','e','f']
num_pairs=len(self.data['K1'])
with h5py.File(dataset_path, 'w') as f:
print('collecting pair info...')
for type in pair_data_type:
dg=f.create_group(type)
for idx in range(num_pairs):
data_item=np.asarray(self.data[type][idx])
dg.create_dataset(str(idx),data_item.shape,data_item.dtype,data=data_item)
for type in ['img_path1','img_path2']:
dg=f.create_group(type)
for idx in range(num_pairs):
dg.create_dataset(str(idx),[1],h5py.string_dtype(encoding='ascii'),data=self.data[type][idx].encode('ascii'))
#dump desc
print('collecting desc and kpt...')
desc1_g,desc2_g,kpt1_g,kpt2_g=f.create_group('desc1'),f.create_group('desc2'),f.create_group('kpt1'),f.create_group('kpt2')
for idx in trange(num_pairs):
desc_file1,desc_file2=h5py.File(self.data['fea_path1'][idx],'r'),h5py.File(self.data['fea_path2'][idx],'r')
desc1,desc2,kpt1,kpt2=desc_file1['descriptors'][()],desc_file2['descriptors'][()],desc_file1['keypoints'][()],desc_file2['keypoints'][()]
desc1_g.create_dataset(str(idx),desc1.shape,desc1.dtype,data=desc1)
desc2_g.create_dataset(str(idx),desc2.shape,desc2.dtype,data=desc2)
kpt1_g.create_dataset(str(idx),kpt1.shape,kpt1.dtype,data=kpt1)
kpt2_g.create_dataset(str(idx),kpt2.shape,kpt2.dtype,data=kpt2)
|