Spaces:
Running
Running
File size: 4,878 Bytes
437b5f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import os
import glob
import pickle
from tqdm import trange
import numpy as np
import h5py
from numpy.core.fromnumeric import reshape
from .base_dumper import BaseDumper
import sys
ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../"))
sys.path.insert(0, ROOT_DIR)
import utils
class fmbench(BaseDumper):
def get_seqs(self):
data_dir=os.path.join(self.config['rawdata_dir'])
self.split_list=[]
for seq in self.config['data_seq']:
cur_split_list=np.unique(np.loadtxt(os.path.join(data_dir,seq,'pairs_which_dataset.txt'),dtype=str))
self.split_list.append(cur_split_list)
for split in cur_split_list:
split_dir=os.path.join(data_dir,seq,split)
dump_dir=os.path.join(self.config['feature_dump_dir'],seq,split)
cur_img_seq=glob.glob(os.path.join(split_dir,'Images','*.jpg'))
cur_dump_seq=[os.path.join(dump_dir,path.split('/')[-1])+'_'+self.config['extractor']['name']+'_'+str(self.config['extractor']['num_kpt'])\
+'.hdf5' for path in cur_img_seq]
self.img_seq+=cur_img_seq
self.dump_seq+=cur_dump_seq
def format_dump_folder(self):
if not os.path.exists(self.config['feature_dump_dir']):
os.mkdir(self.config['feature_dump_dir'])
for seq_index in range(len(self.config['data_seq'])):
seq_dir=os.path.join(self.config['feature_dump_dir'],self.config['data_seq'][seq_index])
if not os.path.exists(seq_dir):
os.mkdir(seq_dir)
for split in self.split_list[seq_index]:
split_dir=os.path.join(seq_dir,split)
if not os.path.exists(split_dir):
os.mkdir(split_dir)
def format_dump_data(self):
print('Formatting data...')
self.data={'K1':[],'K2':[],'R':[],'T':[],'e':[],'f':[],'fea_path1':[],'fea_path2':[],'img_path1':[],'img_path2':[]}
for seq_index in range(len(self.config['data_seq'])):
seq=self.config['data_seq'][seq_index]
print(seq)
pair_list=np.loadtxt(os.path.join(self.config['rawdata_dir'],seq,'pairs_with_gt.txt'),dtype=float)
which_split_list=np.loadtxt(os.path.join(self.config['rawdata_dir'],seq,'pairs_which_dataset.txt'),dtype=str)
for pair_index in trange(len(pair_list)):
cur_pair=pair_list[pair_index]
cur_split=which_split_list[pair_index]
index1,index2=int(cur_pair[0]),int(cur_pair[1])
#get intrinsic
camera=np.loadtxt(os.path.join(self.config['rawdata_dir'],seq,cur_split,'Camera.txt'),dtype=float)
K1,K2=camera[index1].reshape([3,3]),camera[index2].reshape([3,3])
#get pose
pose=np.loadtxt(os.path.join(self.config['rawdata_dir'],seq,cur_split,'Poses.txt'),dtype=float)
pose1,pose2=pose[index1].reshape([3,4]),pose[index2].reshape([3,4])
R1,R2,t1,t2=pose1[:3,:3],pose2[:3,:3],pose1[:3,3][:,np.newaxis],pose2[:3,3][:,np.newaxis]
dR = np.dot(R2, R1.T)
dt = t2 - np.dot(dR, t1)
dt /= np.sqrt(np.sum(dt**2))
e_gt_unnorm = np.reshape(np.matmul(
np.reshape(utils.evaluation_utils.np_skew_symmetric(dt.astype('float64').reshape(1, 3)), (3, 3)),
np.reshape(dR.astype('float64'), (3, 3))), (3, 3))
e_gt = e_gt_unnorm / np.linalg.norm(e_gt_unnorm)
f=cur_pair[2:].reshape([3,3])
f_gt=f / np.linalg.norm(f)
self.data['K1'].append(K1),self.data['K2'].append(K2)
self.data['R'].append(dR),self.data['T'].append(dt)
self.data['e'].append(e_gt),self.data['f'].append(f_gt)
img_path1,img_path2=os.path.join(seq,cur_split,'Images',str(index1).zfill(8)+'.jpg'),\
os.path.join(seq,cur_split,'Images',str(index1).zfill(8)+'.jpg')
fea_path1,fea_path2=os.path.join(self.config['feature_dump_dir'],seq,cur_split,str(index1).zfill(8)+'.jpg'+'_'+self.config['extractor']['name']
+'_'+str(self.config['extractor']['num_kpt'])+'.hdf5'),\
os.path.join(self.config['feature_dump_dir'],seq,cur_split,str(index2).zfill(8)+'.jpg'+'_'+self.config['extractor']['name']
+'_'+str(self.config['extractor']['num_kpt'])+'.hdf5')
self.data['img_path1'].append(img_path1),self.data['img_path2'].append(img_path2)
self.data['fea_path1'].append(fea_path1),self.data['fea_path2'].append(fea_path2)
self.form_standard_dataset()
|