Spaces:
Running
Running
File size: 12,346 Bytes
437b5f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import os
import glob
import math
import re
import numpy as np
import h5py
from tqdm import trange
from torch.multiprocessing import Pool
import pyxis as px
from .base_dumper import BaseDumper
import sys
ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../"))
sys.path.insert(0, ROOT_DIR)
from utils import transformations,data_utils
class gl3d_train(BaseDumper):
def get_seqs(self):
data_dir=os.path.join(self.config['rawdata_dir'],'data')
seq_train=np.loadtxt(os.path.join(self.config['rawdata_dir'],'list','comb','imageset_train.txt'),dtype=str)
seq_valid=np.loadtxt(os.path.join(self.config['rawdata_dir'],'list','comb','imageset_test.txt'),dtype=str)
#filtering seq list
self.seq_list,self.train_list,self.valid_list=[],[],[]
for seq in seq_train:
if seq not in self.config['exclude_seq']:
self.train_list.append(seq)
for seq in seq_valid:
if seq not in self.config['exclude_seq']:
self.valid_list.append(seq)
seq_list=[]
if self.config['dump_train']:
seq_list.append(self.train_list)
if self.config['dump_valid']:
seq_list.append(self.valid_list)
self.seq_list=np.concatenate(seq_list,axis=0)
#self.seq_list=self.seq_list[:2]
#self.valid_list=self.valid_list[:2]
for seq in self.seq_list:
dump_dir=os.path.join(self.config['feature_dump_dir'],seq)
cur_img_seq=glob.glob(os.path.join(data_dir,seq,'undist_images','*.jpg'))
cur_dump_seq=[os.path.join(dump_dir,path.split('/')[-1])+'_'+self.config['extractor']['name']+'_'+str(self.config['extractor']['num_kpt'])\
+'.hdf5' for path in cur_img_seq]
self.img_seq+=cur_img_seq
self.dump_seq+=cur_dump_seq
def format_dump_folder(self):
if not os.path.exists(self.config['feature_dump_dir']):
os.mkdir(self.config['feature_dump_dir'])
for seq in self.seq_list:
seq_dir=os.path.join(self.config['feature_dump_dir'],seq)
if not os.path.exists(seq_dir):
os.mkdir(seq_dir)
if not os.path.exists(self.config['dataset_dump_dir']):
os.mkdir(self.config['dataset_dump_dir'])
def load_geom(self,seq):
# load geometry file
geom_file=os.path.join(self.config['rawdata_dir'],'data',seq,'geolabel','cameras.txt')
basename_list=np.loadtxt(os.path.join(self.config['rawdata_dir'],'data',seq,'basenames.txt'),dtype=str)
geom_dict = []
cameras = np.loadtxt(geom_file)
camera_index=0
for base_index in range(len(basename_list)):
if base_index<cameras[camera_index][0]:
geom_dict.append(None)
continue
cur_geom = {}
ori_img_size = [cameras[camera_index][-2], cameras[camera_index][-1]]
scale_factor = [1000. / ori_img_size[0], 1000. / ori_img_size[1]]
K = np.asarray([[cameras[camera_index][1], cameras[camera_index][5], cameras[camera_index][3]],
[0, cameras[camera_index][2], cameras[camera_index][4]],
[0, 0, 1]])
# Rescale calbration according to previous resizing
S = np.asarray([[scale_factor[0], 0, 0],
[0, scale_factor[1], 0],
[0, 0, 1]])
K = np.dot(S, K)
cur_geom["K"] = K
cur_geom['R'] = cameras[camera_index][9:18].reshape([3, 3])
cur_geom['T'] = cameras[camera_index][6:9]
cur_geom['size']=np.asarray([1000,1000])
geom_dict.append(cur_geom)
camera_index+=1
return geom_dict
def load_depth(self,file_path):
with open(os.path.join(file_path), 'rb') as fin:
color = None
width = None
height = None
scale = None
data_type = None
header = str(fin.readline().decode('UTF-8')).rstrip()
if header == 'PF':
color = True
elif header == 'Pf':
color = False
else:
raise Exception('Not a PFM file.')
dim_match = re.match(r'^(\d+)\s(\d+)\s$', fin.readline().decode('UTF-8'))
if dim_match:
width, height = map(int, dim_match.groups())
else:
raise Exception('Malformed PFM header.')
scale = float((fin.readline().decode('UTF-8')).rstrip())
if scale < 0: # little-endian
data_type = '<f'
else:
data_type = '>f' # big-endian
data_string = fin.read()
data = np.fromstring(data_string, data_type)
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flip(data, 0)
return data
def dump_info(self,seq,info):
pair_type=['dR','dt','K1','K2','size1','size2','corr','incorr1','incorr2']
num_pairs=len(info['dR'])
os.mkdir(os.path.join(self.config['dataset_dump_dir'],seq))
with h5py.File(os.path.join(self.config['dataset_dump_dir'],seq,'info.h5py'), 'w') as f:
for type in pair_type:
dg=f.create_group(type)
for idx in range(num_pairs):
data_item=np.asarray(info[type][idx])
dg.create_dataset(str(idx),data_item.shape,data_item.dtype,data=data_item)
for type in ['img_path1','img_path2']:
dg=f.create_group(type)
for idx in range(num_pairs):
dg.create_dataset(str(idx),[1],h5py.string_dtype(encoding='ascii'),data=info[type][idx].encode('ascii'))
with open(os.path.join(self.config['dataset_dump_dir'],seq,'pair_num.txt'), 'w') as f:
f.write(str(info['pair_num']))
def format_seq(self,index):
seq=self.seq_list[index]
seq_dir=os.path.join(os.path.join(self.config['rawdata_dir'],'data',seq))
basename_list=np.loadtxt(os.path.join(seq_dir,'basenames.txt'),dtype=str)
pair_list=np.loadtxt(os.path.join(seq_dir,'geolabel','common_track.txt'),dtype=float)[:,:2].astype(int)
overlap_score=np.loadtxt(os.path.join(seq_dir,'geolabel','common_track.txt'),dtype=float)[:,2]
geom_dict=self.load_geom(seq)
#check info existance
if os.path.exists(os.path.join(self.config['dataset_dump_dir'],seq,'pair_num.txt')):
return
angle_list=[]
#filtering pairs
for cur_pair in pair_list:
pair_index1,pair_index2=cur_pair[0],cur_pair[1]
geo1,geo2=geom_dict[pair_index1],geom_dict[pair_index2]
dR = np.dot(geo2['R'], geo1['R'].T)
q = transformations.quaternion_from_matrix(dR)
angle_list.append(math.acos(q[0]) * 2 * 180 / math.pi)
angle_list=np.asarray(angle_list)
mask_survive=np.logical_and(
np.logical_and(angle_list>self.config['angle_th'][0],angle_list<self.config['angle_th'][1]),
np.logical_and(overlap_score>self.config['overlap_th'][0],overlap_score<self.config['overlap_th'][1])
)
pair_list=pair_list[mask_survive]
if len(pair_list)<100:
print(seq,len(pair_list))
#sample pairs
shuffled_pair_list=np.random.permutation(pair_list)
sample_target=min(self.config['pairs_per_seq'],len(shuffled_pair_list))
sample_number=0
info={'dR':[],'dt':[],'K1':[],'K2':[],'img_path1':[],'img_path2':[],'fea_path1':[],'fea_path2':[],'size1':[],'size2':[],
'corr':[],'incorr1':[],'incorr2':[],'pair_num':[]}
for cur_pair in shuffled_pair_list:
pair_index1,pair_index2=cur_pair[0],cur_pair[1]
geo1,geo2=geom_dict[pair_index1],geom_dict[pair_index2]
dR = np.dot(geo2['R'], geo1['R'].T)
t1, t2 = geo1["T"].reshape([3, 1]), geo2["T"].reshape([3, 1])
dt = t2 - np.dot(dR, t1)
K1,K2=geo1['K'],geo2['K']
size1,size2=geo1['size'],geo2['size']
basename1,basename2=basename_list[pair_index1],basename_list[pair_index2]
img_path1,img_path2=os.path.join(seq,'undist_images',basename1+'.jpg'),os.path.join(seq,'undist_images',basename2+'.jpg')
fea_path1,fea_path2=os.path.join(seq,basename1+'.jpg'+'_'+self.config['extractor']['name']+'_'+str(self.config['extractor']['num_kpt'])+'.hdf5'),\
os.path.join(seq,basename2+'.jpg'+'_'+self.config['extractor']['name']+'_'+str(self.config['extractor']['num_kpt'])+'.hdf5')
with h5py.File(os.path.join(self.config['feature_dump_dir'],fea_path1),'r') as fea1, \
h5py.File(os.path.join(self.config['feature_dump_dir'],fea_path2),'r') as fea2:
desc1,desc2=fea1['descriptors'][()],fea2['descriptors'][()]
kpt1,kpt2=fea1['keypoints'][()],fea2['keypoints'][()]
depth_path1,depth_path2=os.path.join(self.config['rawdata_dir'],'data',seq,'depths',basename1+'.pfm'),\
os.path.join(self.config['rawdata_dir'],'data',seq,'depths',basename2+'.pfm')
depth1,depth2=self.load_depth(depth_path1),self.load_depth(depth_path2)
corr_index,incorr_index1,incorr_index2=data_utils.make_corr(kpt1[:,:2],kpt2[:,:2],desc1,desc2,depth1,depth2,K1,K2,dR,dt,size1,size2,
self.config['corr_th'],self.config['incorr_th'],self.config['check_desc'])
if len(corr_index)>self.config['min_corr'] and len(incorr_index1)>self.config['min_incorr'] and len(incorr_index2)>self.config['min_incorr']:
info['corr'].append(corr_index),info['incorr1'].append(incorr_index1),info['incorr2'].append(incorr_index2)
info['dR'].append(dR),info['dt'].append(dt),info['K1'].append(K1),info['K2'].append(K2),info['img_path1'].append(img_path1),info['img_path2'].append(img_path2)
info['fea_path1'].append(fea_path1),info['fea_path2'].append(fea_path2),info['size1'].append(size1),info['size2'].append(size2)
sample_number+=1
if sample_number==sample_target:
break
info['pair_num']=sample_number
#dump info
self.dump_info(seq,info)
def collect_meta(self):
print('collecting meta info...')
dump_path,seq_list=[],[]
if self.config['dump_train']:
dump_path.append(os.path.join(self.config['dataset_dump_dir'],'train'))
seq_list.append(self.train_list)
if self.config['dump_valid']:
dump_path.append(os.path.join(self.config['dataset_dump_dir'],'valid'))
seq_list.append(self.valid_list)
for pth,seqs in zip(dump_path,seq_list):
if not os.path.exists(pth):
os.mkdir(pth)
pair_num_list,total_pair=[],0
for seq_index in range(len(seqs)):
seq=seqs[seq_index]
pair_num=np.loadtxt(os.path.join(self.config['dataset_dump_dir'],seq,'pair_num.txt'),dtype=int)
pair_num_list.append(str(pair_num))
total_pair+=pair_num
pair_num_list=np.stack([np.asarray(seqs,dtype=str),np.asarray(pair_num_list,dtype=str)],axis=1)
pair_num_list=np.concatenate([np.asarray([['total',str(total_pair)]]),pair_num_list],axis=0)
np.savetxt(os.path.join(pth,'pair_num.txt'),pair_num_list,fmt='%s')
def format_dump_data(self):
print('Formatting data...')
iteration_num=len(self.seq_list)//self.config['num_process']
if len(self.seq_list)%self.config['num_process']!=0:
iteration_num+=1
pool=Pool(self.config['num_process'])
for index in trange(iteration_num):
indices=range(index*self.config['num_process'],min((index+1)*self.config['num_process'],len(self.seq_list)))
pool.map(self.format_seq,indices)
pool.close()
pool.join()
self.collect_meta() |