File size: 7,886 Bytes
437b5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import numpy as np
import torch
import torch.utils.data as data
import cv2
import os
import h5py
import random

import sys
ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../"))
sys.path.insert(0, ROOT_DIR)

from utils import train_utils,evaluation_utils

torch.multiprocessing.set_sharing_strategy('file_system')


class Offline_Dataset(data.Dataset):
    def __init__(self,config,mode):
        assert mode=='train' or mode=='valid'

        self.config = config
        self.mode = mode
        metadir=os.path.join(config.dataset_path,'valid') if mode=='valid' else os.path.join(config.dataset_path,'train')
        
        pair_num_list=np.loadtxt(os.path.join(metadir,'pair_num.txt'),dtype=str)
        self.total_pairs=int(pair_num_list[0,1])
        self.pair_seq_list,self.accu_pair_num=train_utils.parse_pair_seq(pair_num_list)


    def collate_fn(self, batch):
        batch_size, num_pts = len(batch), batch[0]['x1'].shape[0]
        
        data = {}
        dtype=['x1','x2','kpt1','kpt2','desc1','desc2','num_corr','num_incorr1','num_incorr2','e_gt','pscore1','pscore2','img_path1','img_path2']
        for key in dtype:
            data[key]=[]
        for sample in batch:
            for key in dtype:
                data[key].append(sample[key])
           
        for key in ['x1', 'x2','kpt1','kpt2', 'desc1', 'desc2','e_gt','pscore1','pscore2']:
            data[key] = torch.from_numpy(np.stack(data[key])).float()
        for key in ['num_corr', 'num_incorr1', 'num_incorr2']:
            data[key] = torch.from_numpy(np.stack(data[key])).int()

        # kpt augmentation with random homography
        if (self.mode == 'train' and self.config.data_aug):
            homo_mat = torch.from_numpy(train_utils.get_rnd_homography(batch_size)).unsqueeze(1)
            aug_seed=random.random() 
            if aug_seed<0.5:
                x1_homo = torch.cat([data['x1'], torch.ones([batch_size, num_pts, 1])], dim=-1).unsqueeze(-1)
                x1_homo = torch.matmul(homo_mat.float(), x1_homo.float()).squeeze(-1)
                data['aug_x1'] = x1_homo[:, :, :2] / x1_homo[:, :, 2].unsqueeze(-1)
                data['aug_x2']=data['x2']
            else:
                x2_homo = torch.cat([data['x2'], torch.ones([batch_size, num_pts, 1])], dim=-1).unsqueeze(-1)
                x2_homo = torch.matmul(homo_mat.float(), x2_homo.float()).squeeze(-1)
                data['aug_x2'] = x2_homo[:, :, :2] / x2_homo[:, :, 2].unsqueeze(-1)
                data['aug_x1']=data['x1']
        else:
            data['aug_x1'],data['aug_x2']=data['x1'],data['x2']
        return data


    def __getitem__(self, index):
        seq=self.pair_seq_list[index]
        index_within_seq=index-self.accu_pair_num[seq]

        with h5py.File(os.path.join(self.config.dataset_path,seq,'info.h5py'),'r') as data:
            R,t = data['dR'][str(index_within_seq)][()], data['dt'][str(index_within_seq)][()]
            egt = np.reshape(np.matmul(np.reshape(evaluation_utils.np_skew_symmetric(t.astype('float64').reshape(1, 3)), (3, 3)),np.reshape(R.astype('float64'), (3, 3))), (3, 3))
            egt = egt / np.linalg.norm(egt)
            K1, K2 = data['K1'][str(index_within_seq)][()],data['K2'][str(index_within_seq)][()]
            size1,size2=data['size1'][str(index_within_seq)][()],data['size2'][str(index_within_seq)][()]

            img_path1,img_path2=data['img_path1'][str(index_within_seq)][()][0].decode(),data['img_path2'][str(index_within_seq)][()][0].decode()
            img_name1,img_name2=img_path1.split('/')[-1],img_path2.split('/')[-1]
            img_path1,img_path2=os.path.join(self.config.rawdata_path,img_path1),os.path.join(self.config.rawdata_path,img_path2)
            fea_path1,fea_path2=os.path.join(self.config.desc_path,seq,img_name1+self.config.desc_suffix),\
                                os.path.join(self.config.desc_path,seq,img_name2+self.config.desc_suffix)
            with h5py.File(fea_path1,'r') as fea1, h5py.File(fea_path2,'r') as fea2:
                desc1,kpt1,pscore1=fea1['descriptors'][()],fea1['keypoints'][()][:,:2],fea1['keypoints'][()][:,2]
                desc2,kpt2,pscore2=fea2['descriptors'][()],fea2['keypoints'][()][:,:2],fea2['keypoints'][()][:,2]
                kpt1,kpt2,desc1,desc2=kpt1[:self.config.num_kpt],kpt2[:self.config.num_kpt],desc1[:self.config.num_kpt],desc2[:self.config.num_kpt]

            # normalize kpt
            if self.config.input_normalize=='intrinsic':
                x1, x2 = np.concatenate([kpt1, np.ones([kpt1.shape[0], 1])], axis=-1), np.concatenate(
                    [kpt2, np.ones([kpt2.shape[0], 1])], axis=-1)
                x1, x2 = np.matmul(np.linalg.inv(K1), x1.T).T[:, :2], np.matmul(np.linalg.inv(K2), x2.T).T[:, :2]
            elif self.config.input_normalize=='img' :   
                x1,x2=(kpt1-size1/2)/size1,(kpt2-size2/2)/size2
                S1_inv,S2_inv=np.asarray([[size1[0],0,0.5*size1[0]],[0,size1[1],0.5*size1[1]],[0,0,1]]),\
                            np.asarray([[size2[0],0,0.5*size2[0]],[0,size2[1],0.5*size2[1]],[0,0,1]])
                M1,M2=np.matmul(np.linalg.inv(K1),S1_inv),np.matmul(np.linalg.inv(K2),S2_inv)
                egt=np.matmul(np.matmul(M2.transpose(),egt),M1)
                egt = egt / np.linalg.norm(egt)
            else:
                raise NotImplementedError

            corr=data['corr'][str(index_within_seq)][()]
            incorr1,incorr2=data['incorr1'][str(index_within_seq)][()],data['incorr2'][str(index_within_seq)][()]
            
        #permute kpt
        valid_corr=corr[corr.max(axis=-1)<self.config.num_kpt]
        valid_incorr1,valid_incorr2=incorr1[incorr1<self.config.num_kpt],incorr2[incorr2<self.config.num_kpt]
        num_corr, num_incorr1, num_incorr2 = len(valid_corr), len(valid_incorr1), len(valid_incorr2)
        mask1_invlaid, mask2_invalid = np.ones(x1.shape[0]).astype(bool), np.ones(x2.shape[0]).astype(bool)
        mask1_invlaid[valid_corr[:, 0]] = False
        mask2_invalid[valid_corr[:, 1]] = False
        mask1_invlaid[valid_incorr1] = False
        mask2_invalid[valid_incorr2] = False
        invalid_index1,invalid_index2=np.nonzero(mask1_invlaid)[0],np.nonzero(mask2_invalid)[0]

        #random sample from point w/o valid annotation 
        cur_kpt1 = self.config.num_kpt - num_corr - num_incorr1
        cur_kpt2 = self.config.num_kpt - num_corr - num_incorr2

        if (invalid_index1.shape[0] < cur_kpt1):
            sub_idx1 = np.concatenate([np.arange(len(invalid_index1)),np.random.randint(len(invalid_index1),size=cur_kpt1-len(invalid_index1))])
        if (invalid_index1.shape[0] >= cur_kpt1):
            sub_idx1 =np.random.choice(len(invalid_index1), cur_kpt1,replace=False)
        if (invalid_index2.shape[0] < cur_kpt2):
            sub_idx2 = np.concatenate([np.arange(len(invalid_index2)),np.random.randint(len(invalid_index2),size=cur_kpt2-len(invalid_index2))])
        if (invalid_index2.shape[0] >= cur_kpt2):
            sub_idx2 = np.random.choice(len(invalid_index2), cur_kpt2,replace=False)
        
        per_idx1,per_idx2=np.concatenate([valid_corr[:,0],valid_incorr1,invalid_index1[sub_idx1]]),\
                          np.concatenate([valid_corr[:,1],valid_incorr2,invalid_index2[sub_idx2]])
        
        pscore1,pscore2=pscore1[per_idx1][:,np.newaxis],pscore2[per_idx2][:,np.newaxis]
        x1,x2=x1[per_idx1][:,:2],x2[per_idx2][:,:2]
        desc1,desc2=desc1[per_idx1],desc2[per_idx2]
        kpt1,kpt2=kpt1[per_idx1],kpt2[per_idx2]
        
        return {'x1': x1, 'x2': x2, 'kpt1':kpt1,'kpt2':kpt2,'desc1': desc1, 'desc2': desc2, 'num_corr': num_corr, 'num_incorr1': num_incorr1,'num_incorr2': num_incorr2,'e_gt':egt,\
                'pscore1':pscore1,'pscore2':pscore2,'img_path1':img_path1,'img_path2':img_path2}

    def __len__(self):
        return self.total_pairs