Spaces:
Running
Running
File size: 14,359 Bytes
437b5f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import os
import math
from collections import abc
from loguru import logger
from torch.utils.data.dataset import Dataset
from tqdm import tqdm
from os import path as osp
from pathlib import Path
from joblib import Parallel, delayed
import pytorch_lightning as pl
from torch import distributed as dist
from torch.utils.data import (
Dataset,
DataLoader,
ConcatDataset,
DistributedSampler,
RandomSampler,
dataloader
)
from src.utils.augment import build_augmentor
from src.utils.dataloader import get_local_split
from src.utils.misc import tqdm_joblib
from src.utils import comm
from src.datasets.megadepth import MegaDepthDataset
from src.datasets.scannet import ScanNetDataset
from src.datasets.sampler import RandomConcatSampler
class MultiSceneDataModule(pl.LightningDataModule):
"""
For distributed training, each training process is assgined
only a part of the training scenes to reduce memory overhead.
"""
def __init__(self, args, config):
super().__init__()
# 1. data config
# Train and Val should from the same data source
self.trainval_data_source = config.DATASET.TRAINVAL_DATA_SOURCE
self.test_data_source = config.DATASET.TEST_DATA_SOURCE
# training and validating
self.train_data_root = config.DATASET.TRAIN_DATA_ROOT
self.train_pose_root = config.DATASET.TRAIN_POSE_ROOT # (optional)
self.train_npz_root = config.DATASET.TRAIN_NPZ_ROOT
self.train_list_path = config.DATASET.TRAIN_LIST_PATH
self.train_intrinsic_path = config.DATASET.TRAIN_INTRINSIC_PATH
self.val_data_root = config.DATASET.VAL_DATA_ROOT
self.val_pose_root = config.DATASET.VAL_POSE_ROOT # (optional)
self.val_npz_root = config.DATASET.VAL_NPZ_ROOT
self.val_list_path = config.DATASET.VAL_LIST_PATH
self.val_intrinsic_path = config.DATASET.VAL_INTRINSIC_PATH
# testing
self.test_data_root = config.DATASET.TEST_DATA_ROOT
self.test_pose_root = config.DATASET.TEST_POSE_ROOT # (optional)
self.test_npz_root = config.DATASET.TEST_NPZ_ROOT
self.test_list_path = config.DATASET.TEST_LIST_PATH
self.test_intrinsic_path = config.DATASET.TEST_INTRINSIC_PATH
# 2. dataset config
# general options
self.min_overlap_score_test = config.DATASET.MIN_OVERLAP_SCORE_TEST # 0.4, omit data with overlap_score < min_overlap_score
self.min_overlap_score_train = config.DATASET.MIN_OVERLAP_SCORE_TRAIN
self.augment_fn = build_augmentor(config.DATASET.AUGMENTATION_TYPE) # None, options: [None, 'dark', 'mobile']
# MegaDepth options
self.mgdpt_img_resize = config.DATASET.MGDPT_IMG_RESIZE # 840
self.mgdpt_img_pad = config.DATASET.MGDPT_IMG_PAD # True
self.mgdpt_depth_pad = config.DATASET.MGDPT_DEPTH_PAD # True
self.mgdpt_df = config.DATASET.MGDPT_DF # 8
self.coarse_scale = 1 / config.MODEL.RESOLUTION[0] # 0.125. for training loftr.
# 3.loader parameters
self.train_loader_params = {
'batch_size': args.batch_size,
'num_workers': args.num_workers,
'pin_memory': getattr(args, 'pin_memory', True)
}
self.val_loader_params = {
'batch_size': 1,
'shuffle': False,
'num_workers': args.num_workers,
'pin_memory': getattr(args, 'pin_memory', True)
}
self.test_loader_params = {
'batch_size': 1,
'shuffle': False,
'num_workers': args.num_workers,
'pin_memory': True
}
# 4. sampler
self.data_sampler = config.TRAINER.DATA_SAMPLER
self.n_samples_per_subset = config.TRAINER.N_SAMPLES_PER_SUBSET
self.subset_replacement = config.TRAINER.SB_SUBSET_SAMPLE_REPLACEMENT
self.shuffle = config.TRAINER.SB_SUBSET_SHUFFLE
self.repeat = config.TRAINER.SB_REPEAT
# (optional) RandomSampler for debugging
# misc configurations
self.parallel_load_data = getattr(args, 'parallel_load_data', False)
self.seed = config.TRAINER.SEED # 66
def setup(self, stage=None):
"""
Setup train / val / test dataset. This method will be called by PL automatically.
Args:
stage (str): 'fit' in training phase, and 'test' in testing phase.
"""
assert stage in ['fit', 'test'], "stage must be either fit or test"
try:
self.world_size = dist.get_world_size()
self.rank = dist.get_rank()
logger.info(f"[rank:{self.rank}] world_size: {self.world_size}")
except AssertionError as ae:
self.world_size = 1
self.rank = 0
logger.warning(str(ae) + " (set wolrd_size=1 and rank=0)")
if stage == 'fit':
self.train_dataset = self._setup_dataset(
self.train_data_root,
self.train_npz_root,
self.train_list_path,
self.train_intrinsic_path,
mode='train',
min_overlap_score=self.min_overlap_score_train,
pose_dir=self.train_pose_root)
# setup multiple (optional) validation subsets
if isinstance(self.val_list_path, (list, tuple)):
self.val_dataset = []
if not isinstance(self.val_npz_root, (list, tuple)):
self.val_npz_root = [self.val_npz_root for _ in range(len(self.val_list_path))]
for npz_list, npz_root in zip(self.val_list_path, self.val_npz_root):
self.val_dataset.append(self._setup_dataset(
self.val_data_root,
npz_root,
npz_list,
self.val_intrinsic_path,
mode='val',
min_overlap_score=self.min_overlap_score_test,
pose_dir=self.val_pose_root))
else:
self.val_dataset = self._setup_dataset(
self.val_data_root,
self.val_npz_root,
self.val_list_path,
self.val_intrinsic_path,
mode='val',
min_overlap_score=self.min_overlap_score_test,
pose_dir=self.val_pose_root)
logger.info(f'[rank:{self.rank}] Train & Val Dataset loaded!')
else: # stage == 'test
self.test_dataset = self._setup_dataset(
self.test_data_root,
self.test_npz_root,
self.test_list_path,
self.test_intrinsic_path,
mode='test',
min_overlap_score=self.min_overlap_score_test,
pose_dir=self.test_pose_root)
logger.info(f'[rank:{self.rank}]: Test Dataset loaded!')
def _setup_dataset(self,
data_root,
split_npz_root,
scene_list_path,
intri_path,
mode='train',
min_overlap_score=0.,
pose_dir=None):
""" Setup train / val / test set"""
with open(scene_list_path, 'r') as f:
npz_names = [name.split()[0] for name in f.readlines()]
if mode == 'train':
local_npz_names = get_local_split(npz_names, self.world_size, self.rank, self.seed)
else:
local_npz_names = npz_names
logger.info(f'[rank {self.rank}]: {len(local_npz_names)} scene(s) assigned.')
dataset_builder = self._build_concat_dataset_parallel \
if self.parallel_load_data \
else self._build_concat_dataset
return dataset_builder(data_root, local_npz_names, split_npz_root, intri_path,
mode=mode, min_overlap_score=min_overlap_score, pose_dir=pose_dir)
def _build_concat_dataset(
self,
data_root,
npz_names,
npz_dir,
intrinsic_path,
mode,
min_overlap_score=0.,
pose_dir=None
):
datasets = []
augment_fn = self.augment_fn if mode == 'train' else None
data_source = self.trainval_data_source if mode in ['train', 'val'] else self.test_data_source
if str(data_source).lower() == 'megadepth':
npz_names = [f'{n}.npz' for n in npz_names]
for npz_name in tqdm(npz_names,
desc=f'[rank:{self.rank}] loading {mode} datasets',
disable=int(self.rank) != 0):
# `ScanNetDataset`/`MegaDepthDataset` load all data from npz_path when initialized, which might take time.
npz_path = osp.join(npz_dir, npz_name)
if data_source == 'ScanNet':
datasets.append(
ScanNetDataset(data_root,
npz_path,
intrinsic_path,
mode=mode,
min_overlap_score=min_overlap_score,
augment_fn=augment_fn,
pose_dir=pose_dir))
elif data_source == 'MegaDepth':
datasets.append(
MegaDepthDataset(data_root,
npz_path,
mode=mode,
min_overlap_score=min_overlap_score,
img_resize=self.mgdpt_img_resize,
df=self.mgdpt_df,
img_padding=self.mgdpt_img_pad,
depth_padding=self.mgdpt_depth_pad,
augment_fn=augment_fn,
coarse_scale=self.coarse_scale))
else:
raise NotImplementedError()
return ConcatDataset(datasets)
def _build_concat_dataset_parallel(
self,
data_root,
npz_names,
npz_dir,
intrinsic_path,
mode,
min_overlap_score=0.,
pose_dir=None,
):
augment_fn = self.augment_fn if mode == 'train' else None
data_source = self.trainval_data_source if mode in ['train', 'val'] else self.test_data_source
if str(data_source).lower() == 'megadepth':
npz_names = [f'{n}.npz' for n in npz_names]
with tqdm_joblib(tqdm(desc=f'[rank:{self.rank}] loading {mode} datasets',
total=len(npz_names), disable=int(self.rank) != 0)):
if data_source == 'ScanNet':
datasets = Parallel(n_jobs=math.floor(len(os.sched_getaffinity(0)) * 0.9 / comm.get_local_size()))(
delayed(lambda x: _build_dataset(
ScanNetDataset,
data_root,
osp.join(npz_dir, x),
intrinsic_path,
mode=mode,
min_overlap_score=min_overlap_score,
augment_fn=augment_fn,
pose_dir=pose_dir))(name)
for name in npz_names)
elif data_source == 'MegaDepth':
# TODO: _pickle.PicklingError: Could not pickle the task to send it to the workers.
raise NotImplementedError()
datasets = Parallel(n_jobs=math.floor(len(os.sched_getaffinity(0)) * 0.9 / comm.get_local_size()))(
delayed(lambda x: _build_dataset(
MegaDepthDataset,
data_root,
osp.join(npz_dir, x),
mode=mode,
min_overlap_score=min_overlap_score,
img_resize=self.mgdpt_img_resize,
df=self.mgdpt_df,
img_padding=self.mgdpt_img_pad,
depth_padding=self.mgdpt_depth_pad,
augment_fn=augment_fn,
coarse_scale=self.coarse_scale))(name)
for name in npz_names)
else:
raise ValueError(f'Unknown dataset: {data_source}')
return ConcatDataset(datasets)
def train_dataloader(self):
""" Build training dataloader for ScanNet / MegaDepth. """
assert self.data_sampler in ['scene_balance']
logger.info(f'[rank:{self.rank}/{self.world_size}]: Train Sampler and DataLoader re-init (should not re-init between epochs!).')
if self.data_sampler == 'scene_balance':
sampler = RandomConcatSampler(self.train_dataset,
self.n_samples_per_subset,
self.subset_replacement,
self.shuffle, self.repeat, self.seed)
else:
sampler = None
dataloader = DataLoader(self.train_dataset, sampler=sampler, **self.train_loader_params)
return dataloader
def val_dataloader(self):
""" Build validation dataloader for ScanNet / MegaDepth. """
logger.info(f'[rank:{self.rank}/{self.world_size}]: Val Sampler and DataLoader re-init.')
if not isinstance(self.val_dataset, abc.Sequence):
sampler = DistributedSampler(self.val_dataset, shuffle=False)
return DataLoader(self.val_dataset, sampler=sampler, **self.val_loader_params)
else:
dataloaders = []
for dataset in self.val_dataset:
sampler = DistributedSampler(dataset, shuffle=False)
dataloaders.append(DataLoader(dataset, sampler=sampler, **self.val_loader_params))
return dataloaders
def test_dataloader(self, *args, **kwargs):
logger.info(f'[rank:{self.rank}/{self.world_size}]: Test Sampler and DataLoader re-init.')
sampler = DistributedSampler(self.test_dataset, shuffle=False)
return DataLoader(self.test_dataset, sampler=sampler, **self.test_loader_params)
def _build_dataset(dataset: Dataset, *args, **kwargs):
return dataset(*args, **kwargs)
|