File size: 7,134 Bytes
63f3cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# -*- coding: UTF-8 -*-
'''=================================================
@Project -> File   pram -> segnetvit
@IDE    PyCharm
@Author fx221@cam.ac.uk
@Date   29/01/2024 14:52
=================================================='''

import torch
from torch import nn
import torch.nn.functional as F
from nets.utils import normalize_keypoints


def rotate_half(x: torch.Tensor) -> torch.Tensor:
    x = x.unflatten(-1, (-1, 2))
    x1, x2 = x.unbind(dim=-1)
    return torch.stack((-x2, x1), dim=-1).flatten(start_dim=-2)


def apply_cached_rotary_emb(
        freqs: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
    return (t * freqs[0]) + (rotate_half(t) * freqs[1])


class LearnableFourierPositionalEncoding(nn.Module):
    def __init__(self, M: int, dim: int, F_dim: int = None,
                 gamma: float = 1.0) -> None:
        super().__init__()
        F_dim = F_dim if F_dim is not None else dim
        self.gamma = gamma
        self.Wr = nn.Linear(M, F_dim // 2, bias=False)
        nn.init.normal_(self.Wr.weight.data, mean=0, std=self.gamma ** -2)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """ encode position vector """
        projected = self.Wr(x)
        cosines, sines = torch.cos(projected), torch.sin(projected)
        emb = torch.stack([cosines, sines], 0).unsqueeze(-3)
        return emb.repeat_interleave(2, dim=-1)


class KeypointEncoder(nn.Module):
    """ Joint encoding of visual appearance and location using MLPs"""

    def __init__(self):
        super().__init__()
        self.encoder = nn.Sequential(
            nn.Linear(2, 32),
            nn.LayerNorm(32, elementwise_affine=True),
            nn.GELU(),
            nn.Linear(32, 64),
            nn.LayerNorm(64, elementwise_affine=True),
            nn.GELU(),
            nn.Linear(64, 128),
            nn.LayerNorm(128, elementwise_affine=True),
            nn.GELU(),
            nn.Linear(128, 256),
        )

    def forward(self, kpts, scores=None):
        if scores is not None:
            inputs = [kpts, scores.unsqueeze(2)]  # [B, N, 2] + [B, N, 1]
            return self.encoder(torch.cat(inputs, dim=-1))
        else:
            return self.encoder(kpts)


class Attention(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, q, k, v):
        s = q.shape[-1] ** -0.5
        attn = F.softmax(torch.einsum('...id,...jd->...ij', q, k) * s, -1)
        return torch.einsum('...ij,...jd->...id', attn, v)


class SelfMultiHeadAttention(nn.Module):
    def __init__(self, feat_dim: int, hidden_dim: int, num_heads: int):
        super().__init__()
        self.feat_dim = feat_dim
        self.num_heads = num_heads

        assert feat_dim % num_heads == 0
        self.head_dim = feat_dim // num_heads
        self.qkv = nn.Linear(feat_dim, hidden_dim * 3)
        self.attn = Attention()
        self.proj = nn.Linear(hidden_dim, hidden_dim)
        self.mlp = nn.Sequential(
            nn.Linear(feat_dim + hidden_dim, feat_dim * 2),
            nn.LayerNorm(feat_dim * 2, elementwise_affine=True),
            nn.GELU(),
            nn.Linear(feat_dim * 2, feat_dim)
        )

    def forward(self, x, encoding=None):
        qkv = self.qkv(x)
        qkv = qkv.unflatten(-1, (self.num_heads, -1, 3)).transpose(1, 2)
        q, k, v = qkv[..., 0], qkv[..., 1], qkv[..., 2]
        if encoding is not None:
            q = apply_cached_rotary_emb(encoding, q)
            k = apply_cached_rotary_emb(encoding, k)
        attn = self.attn(q, k, v)
        message = self.proj(attn.transpose(1, 2).flatten(start_dim=-2))
        return x + self.mlp(torch.cat([x, message], -1))


class SegGNNViT(nn.Module):
    def __init__(self, feature_dim: int, n_layers: int, hidden_dim: int = 256, num_heads: int = 4, **kwargs):
        super(SegGNNViT, self).__init__()
        self.layers = nn.ModuleList([
            SelfMultiHeadAttention(feat_dim=feature_dim, hidden_dim=hidden_dim, num_heads=num_heads)
            for _ in range(n_layers)
        ])

    def forward(self, desc, encoding=None):
        for i, layer in enumerate(self.layers):
            desc = layer(desc, encoding)
            # desc = desc + delta // should be removed as this is already done in self-attention
        return desc


class SegNetViT(nn.Module):
    default_config = {
        'descriptor_dim': 256,
        'output_dim': 1024,
        'n_class': 512,
        'keypoint_encoder': [32, 64, 128, 256],
        'n_layers': 15,
        'num_heads': 4,
        'hidden_dim': 256,
        'with_score': False,
        'with_global': False,
        'with_cls': False,
        'with_sc': False,
    }

    def __init__(self, config={}):
        super(SegNetViT, self).__init__()
        self.config = {**self.default_config, **config}
        self.with_cls = self.config['with_cls']
        self.with_sc = self.config['with_sc']

        self.n_layers = self.config['n_layers']
        self.gnn = SegGNNViT(
            feature_dim=self.config['hidden_dim'],
            n_layers=self.config['n_layers'],
            hidden_dim=self.config['hidden_dim'],
            num_heads=self.config['num_heads'],
        )

        self.with_score = self.config['with_score']
        self.kenc = LearnableFourierPositionalEncoding(2, self.config['hidden_dim'] // self.config['num_heads'],
                                                       self.config['hidden_dim'] // self.config['num_heads'])

        self.input_proj = nn.Linear(in_features=self.config['descriptor_dim'],
                                    out_features=self.config['hidden_dim'])
        self.seg = nn.Sequential(
            nn.Linear(in_features=self.config['hidden_dim'], out_features=self.config['output_dim']),
            nn.LayerNorm(self.config['output_dim'], elementwise_affine=True),
            nn.GELU(),
            nn.Linear(self.config['output_dim'], self.config['n_class'])
        )

        if self.with_sc:
            self.sc = nn.Sequential(
                nn.Linear(in_features=config['hidden_dim'], out_features=self.config['output_dim']),
                nn.LayerNorm(self.config['output_dim'], elementwise_affine=True),
                nn.GELU(),
                nn.Linear(self.config['output_dim'], 3)
            )

    def preprocess(self, data):
        desc0 = data['seg_descriptors']
        if 'norm_keypoints' in data.keys():
            norm_kpts0 = data['norm_keypoints']
        elif 'image' in data.keys():
            kpts0 = data['keypoints']
            norm_kpts0 = normalize_keypoints(kpts0, data['image'].shape)
        else:
            raise ValueError('Require image shape for keypoint coordinate normalization')

        enc0 = self.kenc(norm_kpts0)

        return desc0, enc0

    def forward(self, data):
        desc, enc = self.preprocess(data=data)
        desc = self.input_proj(desc)

        desc = self.gnn(desc, enc)
        seg_output = self.seg(desc)  # [B, N, C]

        output = {
            'prediction': seg_output,
        }

        if self.with_sc:
            sc_output = self.sc(desc)
            output['sc'] = sc_output

        return output