File size: 22,559 Bytes
63f3cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
# -*- coding: UTF-8 -*-
'''=================================================
@Project -> File   pram -> sfd2
@IDE    PyCharm
@Author fx221@cam.ac.uk
@Date   07/02/2024 14:53
=================================================='''
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
import torchvision.transforms as tvf

RGB_mean = [0.485, 0.456, 0.406]
RGB_std = [0.229, 0.224, 0.225]

norm_RGB = tvf.Compose([tvf.Normalize(mean=RGB_mean, std=RGB_std)])


def simple_nms(scores, nms_radius: int):
    """ Fast Non-maximum suppression to remove nearby points """
    assert (nms_radius >= 0)

    def max_pool(x):
        return torch.nn.functional.max_pool2d(
            x, kernel_size=nms_radius * 2 + 1, stride=1, padding=nms_radius)

    zeros = torch.zeros_like(scores)
    max_mask = scores == max_pool(scores)
    for _ in range(2):
        supp_mask = max_pool(max_mask.float()) > 0
        supp_scores = torch.where(supp_mask, zeros, scores)
        new_max_mask = supp_scores == max_pool(supp_scores)
        max_mask = max_mask | (new_max_mask & (~supp_mask))
    return torch.where(max_mask, scores, zeros)


def remove_borders(keypoints, scores, border: int, height: int, width: int):
    """ Removes keypoints too close to the border """
    mask_h = (keypoints[:, 0] >= border) & (keypoints[:, 0] < (height - border))
    mask_w = (keypoints[:, 1] >= border) & (keypoints[:, 1] < (width - border))
    mask = mask_h & mask_w
    return keypoints[mask], scores[mask]


def top_k_keypoints(keypoints, scores, k: int):
    if k >= len(keypoints):
        return keypoints, scores
    scores, indices = torch.topk(scores, k, dim=0)
    return keypoints[indices], scores


def sample_descriptors(keypoints, descriptors, s: int = 8):
    """ Interpolate descriptors at keypoint locations """
    b, c, h, w = descriptors.shape
    keypoints = keypoints - s / 2 + 0.5
    keypoints /= torch.tensor([(w * s - s / 2 - 0.5), (h * s - s / 2 - 0.5)],
                              ).to(keypoints)[None]
    keypoints = keypoints * 2 - 1  # normalize to (-1, 1)
    descriptors = torch.nn.functional.grid_sample(
        descriptors, keypoints.view(b, 1, -1, 2), mode='bilinear', align_corners=True)
    descriptors = torch.nn.functional.normalize(
        descriptors.reshape(b, c, -1), p=2, dim=1)
    return descriptors


def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=dilation, groups=groups, bias=False, dilation=dilation)


def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


def conv(in_channels, out_channels, kernel_size=3, stride=1, padding=1, use_bn=False, groups=1, dilation=1):
    if not use_bn:
        return nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
                      kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, dilation=dilation),
            nn.ReLU(inplace=True),
        )
    else:
        return nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
                      kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, dilation=dilation),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True),
        )


class ResBlock(nn.Module):
    def __init__(self, inplanes, outplanes, stride=1, groups=32, dilation=1, norm_layer=None):
        super(ResBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self.conv1 = conv1x1(inplanes, outplanes)
        self.bn1 = norm_layer(outplanes)
        self.conv2 = conv3x3(outplanes, outplanes, stride, groups, dilation)
        self.bn2 = norm_layer(outplanes)
        self.conv3 = conv1x1(outplanes, outplanes)
        self.bn3 = norm_layer(outplanes)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        out += identity
        out = self.relu(out)

        return out


class ResNet4x(nn.Module):
    default_config = {
        'conf_th': 0.005,
        'remove_borders': 4,
        'min_keypoints': 128,
        'max_keypoints': 4096,
    }

    def __init__(self, inputdim=3, outdim=128, desc_compressor=None):
        super().__init__()
        self.outdim = outdim
        self.desc_compressor = desc_compressor

        d1, d2, d3, d4, d5, d6 = 64, 128, 256, 256, 256, 256
        self.conv1a = conv(in_channels=inputdim, out_channels=d1, kernel_size=3, use_bn=True)
        self.conv1b = conv(in_channels=d1, out_channels=d1, kernel_size=3, stride=2, use_bn=True)

        self.conv2a = conv(in_channels=d1, out_channels=d2, kernel_size=3, use_bn=True)
        self.conv2b = conv(in_channels=d2, out_channels=d2, kernel_size=3, stride=2, use_bn=True)

        self.conv3a = conv(in_channels=d2, out_channels=d3, kernel_size=3, use_bn=True)
        self.conv3b = conv(in_channels=d3, out_channels=d3, kernel_size=3, use_bn=True)

        self.conv4 = nn.Sequential(
            ResBlock(inplanes=256, outplanes=256, groups=32),
            ResBlock(inplanes=256, outplanes=256, groups=32),
            ResBlock(inplanes=256, outplanes=256, groups=32),
        )

        self.convPa = nn.Sequential(
            torch.nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            torch.nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
        )
        self.convDa = nn.Sequential(
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        )

        self.convPb = torch.nn.Conv2d(256, 65, kernel_size=1, stride=1, padding=0)
        self.convDb = torch.nn.Conv2d(256, outdim, kernel_size=1, stride=1, padding=0)

    def det(self, x):
        out1a = self.conv1a(x)
        out1b = self.conv1b(out1a)

        out2a = self.conv2a(out1b)
        out2b = self.conv2b(out2a)

        out3a = self.conv3a(out2b)
        out3b = self.conv3b(out3a)

        out4 = self.conv4(out3b)

        cPa = self.convPa(out4)
        logits = self.convPb(cPa)
        full_semi = torch.softmax(logits, dim=1)
        semi = full_semi[:, :-1, :, :]
        Hc, Wc = semi.size(2), semi.size(3)
        score = semi.permute([0, 2, 3, 1])
        score = score.view(score.size(0), Hc, Wc, 8, 8)
        score = score.permute([0, 1, 3, 2, 4])
        score = score.contiguous().view(score.size(0), Hc * 8, Wc * 8)

        # Descriptor Head
        cDa = self.convDa(out4)
        desc = self.convDb(cDa)
        desc = F.normalize(desc, dim=1)

        return score, desc

    def forward(self, batch):
        out1a = self.conv1a(batch['image'])
        out1b = self.conv1b(out1a)

        out2a = self.conv2a(out1b)
        out2b = self.conv2b(out2a)

        out3a = self.conv3a(out2b)
        out3b = self.conv3b(out3a)

        out4 = self.conv4(out3b)

        cPa = self.convPa(out4)
        logits = self.convPb(cPa)
        full_semi = torch.softmax(logits, dim=1)
        semi = full_semi[:, :-1, :, :]
        Hc, Wc = semi.size(2), semi.size(3)
        score = semi.permute([0, 2, 3, 1])
        score = score.view(score.size(0), Hc, Wc, 8, 8)
        score = score.permute([0, 1, 3, 2, 4])
        score = score.contiguous().view(score.size(0), Hc * 8, Wc * 8)

        # Descriptor Head
        cDa = self.convDa(out4)
        desc = self.convDb(cDa)
        desc = F.normalize(desc, dim=1)

        return {
            'dense_features': desc,
            'scores': score,
            'logits': logits,
            'semi_map': semi,
        }

    def extract_patches(self, batch):
        out1a = self.conv1a(batch['image'])
        out1b = self.conv1b(out1a)

        out2a = self.conv2a(out1b)
        out2b = self.conv2b(out2a)

        out3a = self.conv3a(out2b)
        out3b = self.conv3b(out3a)

        out4 = self.conv4(out3b)

        cPa = self.convPa(out4)
        logits = self.convPb(cPa)
        full_semi = torch.softmax(logits, dim=1)
        semi = full_semi[:, :-1, :, :]
        Hc, Wc = semi.size(2), semi.size(3)
        score = semi.permute([0, 2, 3, 1])
        score = score.view(score.size(0), Hc, Wc, 8, 8)
        score = score.permute([0, 1, 3, 2, 4])
        score = score.contiguous().view(score.size(0), Hc * 8, Wc * 8)

        # Descriptor Head
        cDa = self.convDa(out4)
        desc = self.convDb(cDa)
        desc = F.normalize(desc, dim=1)

        return {
            'dense_features': desc,
            'scores': score,
            'logits': logits,
            'semi_map': semi,
        }

    def extract_local_global(self, data,
                             config={
                                 'conf_th': 0.005,
                                 'remove_borders': 4,
                                 'min_keypoints': 128,
                                 'max_keypoints': 4096,
                             }
                             ):

        config = {**self.default_config, **config}

        b, ic, ih, iw = data['image'].shape
        out1a = self.conv1a(data['image'])
        out1b = self.conv1b(out1a)  # 64

        out2a = self.conv2a(out1b)
        out2b = self.conv2b(out2a)  # 128

        out3a = self.conv3a(out2b)
        out3b = self.conv3b(out3a)  # 256

        out4 = self.conv4(out3b)  # 256

        cPa = self.convPa(out4)
        logits = self.convPb(cPa)
        full_semi = torch.softmax(logits, dim=1)
        semi = full_semi[:, :-1, :, :]
        Hc, Wc = semi.size(2), semi.size(3)
        score = semi.permute([0, 2, 3, 1])
        score = score.view(score.size(0), Hc, Wc, 8, 8)
        score = score.permute([0, 1, 3, 2, 4])
        score = score.contiguous().view(score.size(0), Hc * 8, Wc * 8)
        if Hc * 8 != ih or Wc * 8 != iw:
            score = F.interpolate(score.unsqueeze(1), size=[ih, iw], align_corners=True, mode='bilinear')
            score = score.squeeze(1)
        # extract keypoints
        nms_scores = simple_nms(scores=score, nms_radius=4)
        keypoints = [
            torch.nonzero(s >= config['conf_th'])
            for s in nms_scores]
        scores = [s[tuple(k.t())] for s, k in zip(nms_scores, keypoints)]

        if len(scores[0]) <= config['min_keypoints']:
            keypoints = [
                torch.nonzero(s >= config['conf_th'] * 0.5)
                for s in nms_scores]
            scores = [s[tuple(k.t())] for s, k in zip(nms_scores, keypoints)]

        # Discard keypoints near the image borders
        keypoints, scores = list(zip(*[
            remove_borders(k, s, config['remove_borders'], ih, iw)
            for k, s in zip(keypoints, scores)]))

        # Keep the k keypoints with highest score
        if config['max_keypoints'] >= 0:
            keypoints, scores = list(zip(*[
                top_k_keypoints(k, s, config['max_keypoints'])
                for k, s in zip(keypoints, scores)]))

        # Convert (h, w) to (x, y)
        keypoints = [torch.flip(k, [1]).float() for k in keypoints]
        # Descriptor Head
        cDa = self.convDa(out4)
        desc_map = self.convDb(cDa)
        desc_map = F.normalize(desc_map, dim=1)

        descriptors = [sample_descriptors(k[None], d[None], 4)[0]
                       for k, d in zip(keypoints, desc_map)]

        return {
            'score_map': score,
            'desc_map': desc_map,
            'mid_features': out4,
            'global_descriptors': [out1b, out2b, out3b, out4],
            'keypoints': keypoints,
            'scores': scores,
            'descriptors': descriptors,
        }

    def sample(self, score_map, semi_descs, kpts, s=4, norm_desc=True):
        # print('sample: ', score_map.shape, semi_descs.shape, kpts.shape)
        b, c, h, w = semi_descs.shape
        norm_kpts = kpts - s / 2 + 0.5
        norm_kpts = norm_kpts / torch.tensor([(w * s - s / 2 - 0.5), (h * s - s / 2 - 0.5)],
                                             ).to(norm_kpts)[None]
        norm_kpts = norm_kpts * 2 - 1
        # args = {'align_corners': True} if int(torch.__version__[2]) > 2 else {}
        descriptors = torch.nn.functional.grid_sample(
            semi_descs, norm_kpts.view(b, 1, -1, 2), mode='bilinear', align_corners=True)

        if norm_desc:
            descriptors = torch.nn.functional.normalize(
                descriptors.reshape(b, c, -1), p=2, dim=1)
        else:
            descriptors = descriptors.reshape(b, c, -1)

        # print('max: ', torch.min(kpts[:, 1].long()), torch.max(kpts[:, 1].long()), torch.min(kpts[:, 0].long()),
        #       torch.max(kpts[:, 0].long()))
        scores = score_map[0, kpts[:, 1].long(), kpts[:, 0].long()]

        return scores, descriptors.squeeze(0)


class DescriptorCompressor(nn.Module):
    def __init__(self, inputdim: int, outdim: int):
        super().__init__()
        self.inputdim = inputdim
        self.outdim = outdim
        self.conv = nn.Conv1d(in_channels=inputdim, out_channels=outdim, kernel_size=1, padding=0, bias=True)

    def forward(self, x):
        # b, c, n = x.shape
        out = self.conv(x)
        out = F.normalize(out, p=2, dim=1)
        return out


def extract_sfd2_return(model, img, conf_th=0.001,
                        mask=None,
                        topK=-1,
                        min_keypoints=0,
                        **kwargs):
    old_bm = torch.backends.cudnn.benchmark
    torch.backends.cudnn.benchmark = False  # speedup

    img = norm_RGB(img.squeeze())
    img = img[None]
    img = img.cuda()

    B, one, H, W = img.shape

    all_pts = []
    all_descs = []

    if 'scales' in kwargs.keys():
        scales = kwargs.get('scales')
    else:
        scales = [1.0]

    for s in scales:
        if s == 1.0:
            new_img = img
        else:
            nh = int(H * s)
            nw = int(W * s)
            new_img = F.interpolate(img, size=(nh, nw), mode='bilinear', align_corners=True)
        nh, nw = new_img.shape[2:]

        with torch.no_grad():
            heatmap, coarse_desc = model.det(new_img)

            # print("nh, nw, heatmap, desc: ", nh, nw, heatmap.shape, coarse_desc.shape)
            if len(heatmap.size()) == 3:
                heatmap = heatmap.unsqueeze(1)
            if len(heatmap.size()) == 2:
                heatmap = heatmap.unsqueeze(0)
                heatmap = heatmap.unsqueeze(1)
            # print(heatmap.shape)
            if heatmap.size(2) != nh or heatmap.size(3) != nw:
                heatmap = F.interpolate(heatmap, size=[nh, nw], mode='bilinear', align_corners=True)

            conf_thresh = conf_th
            nms_dist = 3
            border_remove = 4
            scores = simple_nms(heatmap, nms_radius=nms_dist)
            keypoints = [
                torch.nonzero(s > conf_thresh)
                for s in scores]
            scores = [s[tuple(k.t())] for s, k in zip(scores, keypoints)]
            # print('scores in return: ', len(scores[0]))

            # print(keypoints[0].shape)
            keypoints = [torch.flip(k, [1]).float() for k in keypoints]
            scores = scores[0].data.cpu().numpy().squeeze()
            keypoints = keypoints[0].data.cpu().numpy().squeeze()
            pts = keypoints.transpose()
            pts[2, :] = scores

            inds = np.argsort(pts[2, :])
            pts = pts[:, inds[::-1]]  # Sort by confidence.
            # Remove points along border.
            bord = border_remove
            toremoveW = np.logical_or(pts[0, :] < bord, pts[0, :] >= (W - bord))
            toremoveH = np.logical_or(pts[1, :] < bord, pts[1, :] >= (H - bord))
            toremove = np.logical_or(toremoveW, toremoveH)
            pts = pts[:, ~toremove]

            # valid_idex = heatmap > conf_thresh
            # valid_score = heatmap[valid_idex]
            # """
            # --- Process descriptor.
            # coarse_desc = coarse_desc.data.cpu().numpy().squeeze()
            D = coarse_desc.size(1)
            if pts.shape[1] == 0:
                desc = np.zeros((D, 0))
            else:
                if coarse_desc.size(2) == nh and coarse_desc.size(3) == nw:
                    desc = coarse_desc[:, :, pts[1, :], pts[0, :]]
                    desc = desc.data.cpu().numpy().reshape(D, -1)
                else:
                    # Interpolate into descriptor map using 2D point locations.
                    samp_pts = torch.from_numpy(pts[:2, :].copy())
                    samp_pts[0, :] = (samp_pts[0, :] / (float(nw) / 2.)) - 1.
                    samp_pts[1, :] = (samp_pts[1, :] / (float(nh) / 2.)) - 1.
                    samp_pts = samp_pts.transpose(0, 1).contiguous()
                    samp_pts = samp_pts.view(1, 1, -1, 2)
                    samp_pts = samp_pts.float()
                    samp_pts = samp_pts.cuda()
                    desc = torch.nn.functional.grid_sample(coarse_desc, samp_pts, mode='bilinear', align_corners=True)
                    desc = desc.data.cpu().numpy().reshape(D, -1)
                    desc /= np.linalg.norm(desc, axis=0)[np.newaxis, :]

            if pts.shape[1] == 0:
                continue

            # print(pts.shape, heatmap.shape, new_img.shape, img.shape, nw, nh, W, H)
            pts[0, :] = pts[0, :] * W / nw
            pts[1, :] = pts[1, :] * H / nh
            all_pts.append(np.transpose(pts, [1, 0]))
            all_descs.append(np.transpose(desc, [1, 0]))

    all_pts = np.vstack(all_pts)
    all_descs = np.vstack(all_descs)

    torch.backends.cudnn.benchmark = old_bm

    if all_pts.shape[0] == 0:
        return None, None, None

    keypoints = all_pts[:, 0:2]
    scores = all_pts[:, 2]
    descriptors = all_descs

    if mask is not None:
        # cv2.imshow("mask", mask)
        # cv2.waitKey(0)
        labels = []
        others = []
        keypoints_with_labels = []
        scores_with_labels = []
        descriptors_with_labels = []
        keypoints_without_labels = []
        scores_without_labels = []
        descriptors_without_labels = []

        id_img = np.int32(mask[:, :, 2]) * 256 * 256 + np.int32(mask[:, :, 1]) * 256 + np.int32(mask[:, :, 0])
        # print(img.shape, id_img.shape)

        for i in range(keypoints.shape[0]):
            x = keypoints[i, 0]
            y = keypoints[i, 1]
            # print("x-y", x, y, int(x), int(y))
            gid = id_img[int(y), int(x)]
            if gid == 0:
                keypoints_without_labels.append(keypoints[i])
                scores_without_labels.append(scores[i])
                descriptors_without_labels.append(descriptors[i])
                others.append(0)
            else:
                keypoints_with_labels.append(keypoints[i])
                scores_with_labels.append(scores[i])
                descriptors_with_labels.append(descriptors[i])
                labels.append(gid)

        if topK > 0:
            if topK <= len(keypoints_with_labels):
                idxes = np.array(scores_with_labels, float).argsort()[::-1][:topK]
                keypoints = np.array(keypoints_with_labels, float)[idxes]
                scores = np.array(scores_with_labels, float)[idxes]
                labels = np.array(labels, np.int32)[idxes]
                descriptors = np.array(descriptors_with_labels, float)[idxes]
            elif topK >= len(keypoints_with_labels) + len(keypoints_without_labels):
                # keypoints = np.vstack([keypoints_with_labels, keypoints_without_labels])
                # scores = np.vstack([scorescc_with_labels, scores_without_labels])
                # descriptors = np.vstack([descriptors_with_labels, descriptors_without_labels])
                # labels = np.vstack([labels, others])
                keypoints = keypoints_with_labels
                scores = scores_with_labels
                descriptors = descriptors_with_labels
                for i in range(len(others)):
                    keypoints.append(keypoints_without_labels[i])
                    scores.append(scores_without_labels[i])
                    descriptors.append(descriptors_without_labels[i])
                    labels.append(others[i])
            else:
                n = topK - len(keypoints_with_labels)
                idxes = np.array(scores_without_labels, float).argsort()[::-1][:n]
                keypoints = keypoints_with_labels
                scores = scores_with_labels
                descriptors = descriptors_with_labels
                for i in idxes:
                    keypoints.append(keypoints_without_labels[i])
                    scores.append(scores_without_labels[i])
                    descriptors.append(descriptors_without_labels[i])
                    labels.append(others[i])
        keypoints = np.array(keypoints, float)
        descriptors = np.array(descriptors, float)
        # print(keypoints.shape, descriptors.shape)
        return {"keypoints": np.array(keypoints, float),
                "descriptors": np.array(descriptors, float),
                "scores": np.array(scores, np.float),
                "labels": np.array(labels, np.int32),
                }
    else:
        # print(topK)
        if topK > 0:
            idxes = np.array(scores, dtype=float).argsort()[::-1][:topK]
            keypoints = np.array(keypoints[idxes], dtype=float)
            scores = np.array(scores[idxes], dtype=float)
            descriptors = np.array(descriptors[idxes], dtype=float)

        keypoints = np.array(keypoints, dtype=float)
        scores = np.array(scores, dtype=float)
        descriptors = np.array(descriptors, dtype=float)

        # print(keypoints.shape, descriptors.shape)

        return {"keypoints": np.array(keypoints, dtype=float),
                "descriptors": descriptors,
                "scores": scores,
                }


def load_sfd2(weight_path):
    net = ResNet4x(inputdim=3, outdim=128)
    net.load_state_dict(torch.load(weight_path, map_location='cpu')['state_dict'], strict=True)
    # print('Load sfd2 from {:s}'.format(weight_path))
    return net