File size: 5,595 Bytes
5bf9d48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04cacb6
 
 
5bf9d48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04cacb6
 
 
5bf9d48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import argparse
import pickle
from pathlib import Path

import cv2
import h5py
import numpy as np
import pycolmap
import torch
from scipy.io import loadmat
from tqdm import tqdm

from . import logger
from .utils.parsers import names_to_pair, parse_retrieval


def interpolate_scan(scan, kp):
    h, w, c = scan.shape
    kp = kp / np.array([[w - 1, h - 1]]) * 2 - 1
    assert np.all(kp > -1) and np.all(kp < 1)
    scan = torch.from_numpy(scan).permute(2, 0, 1)[None]
    kp = torch.from_numpy(kp)[None, None]
    grid_sample = torch.nn.functional.grid_sample

    # To maximize the number of points that have depth:
    # do bilinear interpolation first and then nearest for the remaining points
    interp_lin = grid_sample(scan, kp, align_corners=True, mode="bilinear")[
        0, :, 0
    ]
    interp_nn = torch.nn.functional.grid_sample(
        scan, kp, align_corners=True, mode="nearest"
    )[0, :, 0]
    interp = torch.where(torch.isnan(interp_lin), interp_nn, interp_lin)
    valid = ~torch.any(torch.isnan(interp), 0)

    kp3d = interp.T.numpy()
    valid = valid.numpy()
    return kp3d, valid


def get_scan_pose(dataset_dir, rpath):
    split_image_rpath = rpath.split("/")
    floor_name = split_image_rpath[-3]
    scan_id = split_image_rpath[-2]
    image_name = split_image_rpath[-1]
    building_name = image_name[:3]

    path = Path(
        dataset_dir,
        "database/alignments",
        floor_name,
        f"transformations/{building_name}_trans_{scan_id}.txt",
    )
    with open(path) as f:
        raw_lines = f.readlines()

    P_after_GICP = np.array(
        [
            np.fromstring(raw_lines[7], sep=" "),
            np.fromstring(raw_lines[8], sep=" "),
            np.fromstring(raw_lines[9], sep=" "),
            np.fromstring(raw_lines[10], sep=" "),
        ]
    )

    return P_after_GICP


def pose_from_cluster(
    dataset_dir, q, retrieved, feature_file, match_file, skip=None
):
    height, width = cv2.imread(str(dataset_dir / q)).shape[:2]
    cx = 0.5 * width
    cy = 0.5 * height
    focal_length = 4032.0 * 28.0 / 36.0

    all_mkpq = []
    all_mkpr = []
    all_mkp3d = []
    all_indices = []
    kpq = feature_file[q]["keypoints"].__array__()
    num_matches = 0

    for i, r in enumerate(retrieved):
        kpr = feature_file[r]["keypoints"].__array__()
        pair = names_to_pair(q, r)
        m = match_file[pair]["matches0"].__array__()
        v = m > -1

        if skip and (np.count_nonzero(v) < skip):
            continue

        mkpq, mkpr = kpq[v], kpr[m[v]]
        num_matches += len(mkpq)

        scan_r = loadmat(Path(dataset_dir, r + ".mat"))["XYZcut"]
        mkp3d, valid = interpolate_scan(scan_r, mkpr)
        Tr = get_scan_pose(dataset_dir, r)
        mkp3d = (Tr[:3, :3] @ mkp3d.T + Tr[:3, -1:]).T

        all_mkpq.append(mkpq[valid])
        all_mkpr.append(mkpr[valid])
        all_mkp3d.append(mkp3d[valid])
        all_indices.append(np.full(np.count_nonzero(valid), i))

    all_mkpq = np.concatenate(all_mkpq, 0)
    all_mkpr = np.concatenate(all_mkpr, 0)
    all_mkp3d = np.concatenate(all_mkp3d, 0)
    all_indices = np.concatenate(all_indices, 0)

    cfg = {
        "model": "SIMPLE_PINHOLE",
        "width": width,
        "height": height,
        "params": [focal_length, cx, cy],
    }
    ret = pycolmap.absolute_pose_estimation(all_mkpq, all_mkp3d, cfg, 48.00)
    ret["cfg"] = cfg
    return ret, all_mkpq, all_mkpr, all_mkp3d, all_indices, num_matches


def main(dataset_dir, retrieval, features, matches, results, skip_matches=None):
    assert retrieval.exists(), retrieval
    assert features.exists(), features
    assert matches.exists(), matches

    retrieval_dict = parse_retrieval(retrieval)
    queries = list(retrieval_dict.keys())

    feature_file = h5py.File(features, "r", libver="latest")
    match_file = h5py.File(matches, "r", libver="latest")

    poses = {}
    logs = {
        "features": features,
        "matches": matches,
        "retrieval": retrieval,
        "loc": {},
    }
    logger.info("Starting localization...")
    for q in tqdm(queries):
        db = retrieval_dict[q]
        ret, mkpq, mkpr, mkp3d, indices, num_matches = pose_from_cluster(
            dataset_dir, q, db, feature_file, match_file, skip_matches
        )

        poses[q] = (ret["qvec"], ret["tvec"])
        logs["loc"][q] = {
            "db": db,
            "PnP_ret": ret,
            "keypoints_query": mkpq,
            "keypoints_db": mkpr,
            "3d_points": mkp3d,
            "indices_db": indices,
            "num_matches": num_matches,
        }

    logger.info(f"Writing poses to {results}...")
    with open(results, "w") as f:
        for q in queries:
            qvec, tvec = poses[q]
            qvec = " ".join(map(str, qvec))
            tvec = " ".join(map(str, tvec))
            name = q.split("/")[-1]
            f.write(f"{name} {qvec} {tvec}\n")

    logs_path = f"{results}_logs.pkl"
    logger.info(f"Writing logs to {logs_path}...")
    with open(logs_path, "wb") as f:
        pickle.dump(logs, f)
    logger.info("Done!")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--dataset_dir", type=Path, required=True)
    parser.add_argument("--retrieval", type=Path, required=True)
    parser.add_argument("--features", type=Path, required=True)
    parser.add_argument("--matches", type=Path, required=True)
    parser.add_argument("--results", type=Path, required=True)
    parser.add_argument("--skip_matches", type=int)
    args = parser.parse_args()
    main(**args.__dict__)