Spaces:
Running
Running
File size: 5,595 Bytes
5bf9d48 04cacb6 5bf9d48 04cacb6 5bf9d48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import argparse
import pickle
from pathlib import Path
import cv2
import h5py
import numpy as np
import pycolmap
import torch
from scipy.io import loadmat
from tqdm import tqdm
from . import logger
from .utils.parsers import names_to_pair, parse_retrieval
def interpolate_scan(scan, kp):
h, w, c = scan.shape
kp = kp / np.array([[w - 1, h - 1]]) * 2 - 1
assert np.all(kp > -1) and np.all(kp < 1)
scan = torch.from_numpy(scan).permute(2, 0, 1)[None]
kp = torch.from_numpy(kp)[None, None]
grid_sample = torch.nn.functional.grid_sample
# To maximize the number of points that have depth:
# do bilinear interpolation first and then nearest for the remaining points
interp_lin = grid_sample(scan, kp, align_corners=True, mode="bilinear")[
0, :, 0
]
interp_nn = torch.nn.functional.grid_sample(
scan, kp, align_corners=True, mode="nearest"
)[0, :, 0]
interp = torch.where(torch.isnan(interp_lin), interp_nn, interp_lin)
valid = ~torch.any(torch.isnan(interp), 0)
kp3d = interp.T.numpy()
valid = valid.numpy()
return kp3d, valid
def get_scan_pose(dataset_dir, rpath):
split_image_rpath = rpath.split("/")
floor_name = split_image_rpath[-3]
scan_id = split_image_rpath[-2]
image_name = split_image_rpath[-1]
building_name = image_name[:3]
path = Path(
dataset_dir,
"database/alignments",
floor_name,
f"transformations/{building_name}_trans_{scan_id}.txt",
)
with open(path) as f:
raw_lines = f.readlines()
P_after_GICP = np.array(
[
np.fromstring(raw_lines[7], sep=" "),
np.fromstring(raw_lines[8], sep=" "),
np.fromstring(raw_lines[9], sep=" "),
np.fromstring(raw_lines[10], sep=" "),
]
)
return P_after_GICP
def pose_from_cluster(
dataset_dir, q, retrieved, feature_file, match_file, skip=None
):
height, width = cv2.imread(str(dataset_dir / q)).shape[:2]
cx = 0.5 * width
cy = 0.5 * height
focal_length = 4032.0 * 28.0 / 36.0
all_mkpq = []
all_mkpr = []
all_mkp3d = []
all_indices = []
kpq = feature_file[q]["keypoints"].__array__()
num_matches = 0
for i, r in enumerate(retrieved):
kpr = feature_file[r]["keypoints"].__array__()
pair = names_to_pair(q, r)
m = match_file[pair]["matches0"].__array__()
v = m > -1
if skip and (np.count_nonzero(v) < skip):
continue
mkpq, mkpr = kpq[v], kpr[m[v]]
num_matches += len(mkpq)
scan_r = loadmat(Path(dataset_dir, r + ".mat"))["XYZcut"]
mkp3d, valid = interpolate_scan(scan_r, mkpr)
Tr = get_scan_pose(dataset_dir, r)
mkp3d = (Tr[:3, :3] @ mkp3d.T + Tr[:3, -1:]).T
all_mkpq.append(mkpq[valid])
all_mkpr.append(mkpr[valid])
all_mkp3d.append(mkp3d[valid])
all_indices.append(np.full(np.count_nonzero(valid), i))
all_mkpq = np.concatenate(all_mkpq, 0)
all_mkpr = np.concatenate(all_mkpr, 0)
all_mkp3d = np.concatenate(all_mkp3d, 0)
all_indices = np.concatenate(all_indices, 0)
cfg = {
"model": "SIMPLE_PINHOLE",
"width": width,
"height": height,
"params": [focal_length, cx, cy],
}
ret = pycolmap.absolute_pose_estimation(all_mkpq, all_mkp3d, cfg, 48.00)
ret["cfg"] = cfg
return ret, all_mkpq, all_mkpr, all_mkp3d, all_indices, num_matches
def main(dataset_dir, retrieval, features, matches, results, skip_matches=None):
assert retrieval.exists(), retrieval
assert features.exists(), features
assert matches.exists(), matches
retrieval_dict = parse_retrieval(retrieval)
queries = list(retrieval_dict.keys())
feature_file = h5py.File(features, "r", libver="latest")
match_file = h5py.File(matches, "r", libver="latest")
poses = {}
logs = {
"features": features,
"matches": matches,
"retrieval": retrieval,
"loc": {},
}
logger.info("Starting localization...")
for q in tqdm(queries):
db = retrieval_dict[q]
ret, mkpq, mkpr, mkp3d, indices, num_matches = pose_from_cluster(
dataset_dir, q, db, feature_file, match_file, skip_matches
)
poses[q] = (ret["qvec"], ret["tvec"])
logs["loc"][q] = {
"db": db,
"PnP_ret": ret,
"keypoints_query": mkpq,
"keypoints_db": mkpr,
"3d_points": mkp3d,
"indices_db": indices,
"num_matches": num_matches,
}
logger.info(f"Writing poses to {results}...")
with open(results, "w") as f:
for q in queries:
qvec, tvec = poses[q]
qvec = " ".join(map(str, qvec))
tvec = " ".join(map(str, tvec))
name = q.split("/")[-1]
f.write(f"{name} {qvec} {tvec}\n")
logs_path = f"{results}_logs.pkl"
logger.info(f"Writing logs to {logs_path}...")
with open(logs_path, "wb") as f:
pickle.dump(logs, f)
logger.info("Done!")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_dir", type=Path, required=True)
parser.add_argument("--retrieval", type=Path, required=True)
parser.add_argument("--features", type=Path, required=True)
parser.add_argument("--matches", type=Path, required=True)
parser.add_argument("--results", type=Path, required=True)
parser.add_argument("--skip_matches", type=int)
args = parser.parse_args()
main(**args.__dict__)
|