Vincentqyw
fix: roma
4c12b36
raw
history blame
4.81 kB
"""
Line segment detection from raw images.
"""
import time
import numpy as np
import torch
from torch.nn.functional import softmax
from .model_util import get_model
from .loss import get_loss_and_weights
from .line_detection import LineSegmentDetectionModule
from ..train import convert_junc_predictions
from ..misc.train_utils import adapt_checkpoint
def line_map_to_segments(junctions, line_map):
"""Convert a line map to a Nx2x2 list of segments."""
line_map_tmp = line_map.copy()
output_segments = np.zeros([0, 2, 2])
for idx in range(junctions.shape[0]):
# if no connectivity, just skip it
if line_map_tmp[idx, :].sum() == 0:
continue
# Record the line segment
else:
for idx2 in np.where(line_map_tmp[idx, :] == 1)[0]:
p1 = junctions[idx, :] # HW format
p2 = junctions[idx2, :]
single_seg = np.concatenate([p1[None, ...], p2[None, ...]], axis=0)
output_segments = np.concatenate(
(output_segments, single_seg[None, ...]), axis=0
)
# Update line_map
line_map_tmp[idx, idx2] = 0
line_map_tmp[idx2, idx] = 0
return output_segments
class LineDetector(object):
def __init__(
self, model_cfg, ckpt_path, device, line_detector_cfg, junc_detect_thresh=None
):
"""SOLD² line detector taking raw images as input.
Parameters:
model_cfg: config for CNN model
ckpt_path: path to the weights
line_detector_cfg: config file for the line detection module
"""
# Get loss weights if dynamic weighting
_, loss_weights = get_loss_and_weights(model_cfg, device)
self.device = device
# Initialize the cnn backbone
self.model = get_model(model_cfg, loss_weights)
checkpoint = torch.load(ckpt_path, map_location=self.device)
checkpoint = adapt_checkpoint(checkpoint["model_state_dict"])
self.model.load_state_dict(checkpoint)
self.model = self.model.to(self.device)
self.model = self.model.eval()
self.grid_size = model_cfg["grid_size"]
if junc_detect_thresh is not None:
self.junc_detect_thresh = junc_detect_thresh
else:
self.junc_detect_thresh = model_cfg.get("detection_thresh", 1 / 65)
self.max_num_junctions = model_cfg.get("max_num_junctions", 300)
# Initialize the line detector
self.line_detector_cfg = line_detector_cfg
self.line_detector = LineSegmentDetectionModule(**line_detector_cfg)
def __call__(
self, input_image, valid_mask=None, return_heatmap=False, profile=False
):
# Now we restrict input_image to 4D torch tensor
if (not len(input_image.shape) == 4) or (
not isinstance(input_image, torch.Tensor)
):
raise ValueError("[Error] the input image should be a 4D torch tensor.")
# Move the input to corresponding device
input_image = input_image.to(self.device)
# Forward of the CNN backbone
start_time = time.time()
with torch.no_grad():
net_outputs = self.model(input_image)
junc_np = convert_junc_predictions(
net_outputs["junctions"],
self.grid_size,
self.junc_detect_thresh,
self.max_num_junctions,
)
if valid_mask is None:
junctions = np.where(junc_np["junc_pred_nms"].squeeze())
else:
junctions = np.where(junc_np["junc_pred_nms"].squeeze() * valid_mask)
junctions = np.concatenate(
[junctions[0][..., None], junctions[1][..., None]], axis=-1
)
if net_outputs["heatmap"].shape[1] == 2:
# Convert to single channel directly from here
heatmap = softmax(net_outputs["heatmap"], dim=1)[:, 1:, :, :]
else:
heatmap = torch.sigmoid(net_outputs["heatmap"])
heatmap = heatmap.cpu().numpy().transpose(0, 2, 3, 1)[0, :, :, 0]
# Run the line detector.
line_map, junctions, heatmap = self.line_detector.detect(
junctions, heatmap, device=self.device
)
heatmap = heatmap.cpu().numpy()
if isinstance(line_map, torch.Tensor):
line_map = line_map.cpu().numpy()
if isinstance(junctions, torch.Tensor):
junctions = junctions.cpu().numpy()
line_segments = line_map_to_segments(junctions, line_map)
end_time = time.time()
outputs = {"line_segments": line_segments}
if return_heatmap:
outputs["heatmap"] = heatmap
if profile:
outputs["time"] = end_time - start_time
return outputs