Realcat
update:roma and examples
b075789
raw
history blame
32.2 kB
import os
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
import warnings
from warnings import warn
from PIL import Image
import romatch
from romatch.utils import get_tuple_transform_ops
from romatch.utils.local_correlation import local_correlation
from romatch.utils.utils import cls_to_flow_refine
from romatch.utils.kde import kde
from typing import Union
class ConvRefiner(nn.Module):
def __init__(
self,
in_dim=6,
hidden_dim=16,
out_dim=2,
dw=False,
kernel_size=5,
hidden_blocks=3,
displacement_emb = None,
displacement_emb_dim = None,
local_corr_radius = None,
corr_in_other = None,
no_im_B_fm = False,
amp = False,
concat_logits = False,
use_bias_block_1 = True,
use_cosine_corr = False,
disable_local_corr_grad = False,
is_classifier = False,
sample_mode = "bilinear",
norm_type = nn.BatchNorm2d,
bn_momentum = 0.1,
amp_dtype = torch.float16,
):
super().__init__()
self.bn_momentum = bn_momentum
self.block1 = self.create_block(
in_dim, hidden_dim, dw=dw, kernel_size=kernel_size, bias = use_bias_block_1,
)
self.hidden_blocks = nn.Sequential(
*[
self.create_block(
hidden_dim,
hidden_dim,
dw=dw,
kernel_size=kernel_size,
norm_type=norm_type,
)
for hb in range(hidden_blocks)
]
)
self.hidden_blocks = self.hidden_blocks
self.out_conv = nn.Conv2d(hidden_dim, out_dim, 1, 1, 0)
if displacement_emb:
self.has_displacement_emb = True
self.disp_emb = nn.Conv2d(2,displacement_emb_dim,1,1,0)
else:
self.has_displacement_emb = False
self.local_corr_radius = local_corr_radius
self.corr_in_other = corr_in_other
self.no_im_B_fm = no_im_B_fm
self.amp = amp
self.concat_logits = concat_logits
self.use_cosine_corr = use_cosine_corr
self.disable_local_corr_grad = disable_local_corr_grad
self.is_classifier = is_classifier
self.sample_mode = sample_mode
self.amp_dtype = amp_dtype
def create_block(
self,
in_dim,
out_dim,
dw=False,
kernel_size=5,
bias = True,
norm_type = nn.BatchNorm2d,
):
num_groups = 1 if not dw else in_dim
if dw:
assert (
out_dim % in_dim == 0
), "outdim must be divisible by indim for depthwise"
conv1 = nn.Conv2d(
in_dim,
out_dim,
kernel_size=kernel_size,
stride=1,
padding=kernel_size // 2,
groups=num_groups,
bias=bias,
)
norm = norm_type(out_dim, momentum = self.bn_momentum) if norm_type is nn.BatchNorm2d else norm_type(num_channels = out_dim)
relu = nn.ReLU(inplace=True)
conv2 = nn.Conv2d(out_dim, out_dim, 1, 1, 0)
return nn.Sequential(conv1, norm, relu, conv2)
def forward(self, x, y, flow, scale_factor = 1, logits = None):
b,c,hs,ws = x.shape
with torch.autocast("cuda", enabled=self.amp, dtype = self.amp_dtype):
with torch.no_grad():
x_hat = F.grid_sample(y, flow.permute(0, 2, 3, 1), align_corners=False, mode = self.sample_mode)
if self.has_displacement_emb:
im_A_coords = torch.meshgrid(
(
torch.linspace(-1 + 1 / hs, 1 - 1 / hs, hs, device=x.device),
torch.linspace(-1 + 1 / ws, 1 - 1 / ws, ws, device=x.device),
)
)
im_A_coords = torch.stack((im_A_coords[1], im_A_coords[0]))
im_A_coords = im_A_coords[None].expand(b, 2, hs, ws)
in_displacement = flow-im_A_coords
emb_in_displacement = self.disp_emb(40/32 * scale_factor * in_displacement)
if self.local_corr_radius:
if self.corr_in_other:
# Corr in other means take a kxk grid around the predicted coordinate in other image
local_corr = local_correlation(x,y,local_radius=self.local_corr_radius,flow = flow,
sample_mode = self.sample_mode)
else:
raise NotImplementedError("Local corr in own frame should not be used.")
if self.no_im_B_fm:
x_hat = torch.zeros_like(x)
d = torch.cat((x, x_hat, emb_in_displacement, local_corr), dim=1)
else:
d = torch.cat((x, x_hat, emb_in_displacement), dim=1)
else:
if self.no_im_B_fm:
x_hat = torch.zeros_like(x)
d = torch.cat((x, x_hat), dim=1)
if self.concat_logits:
d = torch.cat((d, logits), dim=1)
d = self.block1(d)
d = self.hidden_blocks(d)
d = self.out_conv(d.float())
displacement, certainty = d[:, :-1], d[:, -1:]
return displacement, certainty
class CosKernel(nn.Module): # similar to softmax kernel
def __init__(self, T, learn_temperature=False):
super().__init__()
self.learn_temperature = learn_temperature
if self.learn_temperature:
self.T = nn.Parameter(torch.tensor(T))
else:
self.T = T
def __call__(self, x, y, eps=1e-6):
c = torch.einsum("bnd,bmd->bnm", x, y) / (
x.norm(dim=-1)[..., None] * y.norm(dim=-1)[:, None] + eps
)
if self.learn_temperature:
T = self.T.abs() + 0.01
else:
T = torch.tensor(self.T, device=c.device)
K = ((c - 1.0) / T).exp()
return K
class GP(nn.Module):
def __init__(
self,
kernel,
T=1,
learn_temperature=False,
only_attention=False,
gp_dim=64,
basis="fourier",
covar_size=5,
only_nearest_neighbour=False,
sigma_noise=0.1,
no_cov=False,
predict_features = False,
):
super().__init__()
self.K = kernel(T=T, learn_temperature=learn_temperature)
self.sigma_noise = sigma_noise
self.covar_size = covar_size
self.pos_conv = torch.nn.Conv2d(2, gp_dim, 1, 1)
self.only_attention = only_attention
self.only_nearest_neighbour = only_nearest_neighbour
self.basis = basis
self.no_cov = no_cov
self.dim = gp_dim
self.predict_features = predict_features
def get_local_cov(self, cov):
K = self.covar_size
b, h, w, h, w = cov.shape
hw = h * w
cov = F.pad(cov, 4 * (K // 2,)) # pad v_q
delta = torch.stack(
torch.meshgrid(
torch.arange(-(K // 2), K // 2 + 1), torch.arange(-(K // 2), K // 2 + 1)
),
dim=-1,
)
positions = torch.stack(
torch.meshgrid(
torch.arange(K // 2, h + K // 2), torch.arange(K // 2, w + K // 2)
),
dim=-1,
)
neighbours = positions[:, :, None, None, :] + delta[None, :, :]
points = torch.arange(hw)[:, None].expand(hw, K**2)
local_cov = cov.reshape(b, hw, h + K - 1, w + K - 1)[
:,
points.flatten(),
neighbours[..., 0].flatten(),
neighbours[..., 1].flatten(),
].reshape(b, h, w, K**2)
return local_cov
def reshape(self, x):
return rearrange(x, "b d h w -> b (h w) d")
def project_to_basis(self, x):
if self.basis == "fourier":
return torch.cos(8 * math.pi * self.pos_conv(x))
elif self.basis == "linear":
return self.pos_conv(x)
else:
raise ValueError(
"No other bases other than fourier and linear currently im_Bed in public release"
)
def get_pos_enc(self, y):
b, c, h, w = y.shape
coarse_coords = torch.meshgrid(
(
torch.linspace(-1 + 1 / h, 1 - 1 / h, h, device=y.device),
torch.linspace(-1 + 1 / w, 1 - 1 / w, w, device=y.device),
)
)
coarse_coords = torch.stack((coarse_coords[1], coarse_coords[0]), dim=-1)[
None
].expand(b, h, w, 2)
coarse_coords = rearrange(coarse_coords, "b h w d -> b d h w")
coarse_embedded_coords = self.project_to_basis(coarse_coords)
return coarse_embedded_coords
def forward(self, x, y, **kwargs):
b, c, h1, w1 = x.shape
b, c, h2, w2 = y.shape
f = self.get_pos_enc(y)
b, d, h2, w2 = f.shape
x, y, f = self.reshape(x.float()), self.reshape(y.float()), self.reshape(f)
K_xx = self.K(x, x)
K_yy = self.K(y, y)
K_xy = self.K(x, y)
K_yx = K_xy.permute(0, 2, 1)
sigma_noise = self.sigma_noise * torch.eye(h2 * w2, device=x.device)[None, :, :]
with warnings.catch_warnings():
K_yy_inv = torch.linalg.inv(K_yy + sigma_noise)
mu_x = K_xy.matmul(K_yy_inv.matmul(f))
mu_x = rearrange(mu_x, "b (h w) d -> b d h w", h=h1, w=w1)
if not self.no_cov:
cov_x = K_xx - K_xy.matmul(K_yy_inv.matmul(K_yx))
cov_x = rearrange(cov_x, "b (h w) (r c) -> b h w r c", h=h1, w=w1, r=h1, c=w1)
local_cov_x = self.get_local_cov(cov_x)
local_cov_x = rearrange(local_cov_x, "b h w K -> b K h w")
gp_feats = torch.cat((mu_x, local_cov_x), dim=1)
else:
gp_feats = mu_x
return gp_feats
class Decoder(nn.Module):
def __init__(
self, embedding_decoder, gps, proj, conv_refiner, detach=False, scales="all", pos_embeddings = None,
num_refinement_steps_per_scale = 1, warp_noise_std = 0.0, displacement_dropout_p = 0.0, gm_warp_dropout_p = 0.0,
flow_upsample_mode = "bilinear", amp_dtype = torch.float16,
):
super().__init__()
self.embedding_decoder = embedding_decoder
self.num_refinement_steps_per_scale = num_refinement_steps_per_scale
self.gps = gps
self.proj = proj
self.conv_refiner = conv_refiner
self.detach = detach
if pos_embeddings is None:
self.pos_embeddings = {}
else:
self.pos_embeddings = pos_embeddings
if scales == "all":
self.scales = ["32", "16", "8", "4", "2", "1"]
else:
self.scales = scales
self.warp_noise_std = warp_noise_std
self.refine_init = 4
self.displacement_dropout_p = displacement_dropout_p
self.gm_warp_dropout_p = gm_warp_dropout_p
self.flow_upsample_mode = flow_upsample_mode
self.amp_dtype = amp_dtype
def get_placeholder_flow(self, b, h, w, device):
coarse_coords = torch.meshgrid(
(
torch.linspace(-1 + 1 / h, 1 - 1 / h, h, device=device),
torch.linspace(-1 + 1 / w, 1 - 1 / w, w, device=device),
)
)
coarse_coords = torch.stack((coarse_coords[1], coarse_coords[0]), dim=-1)[
None
].expand(b, h, w, 2)
coarse_coords = rearrange(coarse_coords, "b h w d -> b d h w")
return coarse_coords
def get_positional_embedding(self, b, h ,w, device):
coarse_coords = torch.meshgrid(
(
torch.linspace(-1 + 1 / h, 1 - 1 / h, h, device=device),
torch.linspace(-1 + 1 / w, 1 - 1 / w, w, device=device),
)
)
coarse_coords = torch.stack((coarse_coords[1], coarse_coords[0]), dim=-1)[
None
].expand(b, h, w, 2)
coarse_coords = rearrange(coarse_coords, "b h w d -> b d h w")
coarse_embedded_coords = self.pos_embedding(coarse_coords)
return coarse_embedded_coords
def forward(self, f1, f2, gt_warp = None, gt_prob = None, upsample = False, flow = None, certainty = None, scale_factor = 1):
coarse_scales = self.embedding_decoder.scales()
all_scales = self.scales if not upsample else ["8", "4", "2", "1"]
sizes = {scale: f1[scale].shape[-2:] for scale in f1}
h, w = sizes[1]
b = f1[1].shape[0]
device = f1[1].device
coarsest_scale = int(all_scales[0])
old_stuff = torch.zeros(
b, self.embedding_decoder.hidden_dim, *sizes[coarsest_scale], device=f1[coarsest_scale].device
)
corresps = {}
if not upsample:
flow = self.get_placeholder_flow(b, *sizes[coarsest_scale], device)
certainty = 0.0
else:
flow = F.interpolate(
flow,
size=sizes[coarsest_scale],
align_corners=False,
mode="bilinear",
)
certainty = F.interpolate(
certainty,
size=sizes[coarsest_scale],
align_corners=False,
mode="bilinear",
)
displacement = 0.0
for new_scale in all_scales:
ins = int(new_scale)
corresps[ins] = {}
f1_s, f2_s = f1[ins], f2[ins]
if new_scale in self.proj:
with torch.autocast("cuda", dtype = self.amp_dtype):
f1_s, f2_s = self.proj[new_scale](f1_s), self.proj[new_scale](f2_s)
if ins in coarse_scales:
old_stuff = F.interpolate(
old_stuff, size=sizes[ins], mode="bilinear", align_corners=False
)
gp_posterior = self.gps[new_scale](f1_s, f2_s)
gm_warp_or_cls, certainty, old_stuff = self.embedding_decoder(
gp_posterior, f1_s, old_stuff, new_scale
)
if self.embedding_decoder.is_classifier:
flow = cls_to_flow_refine(
gm_warp_or_cls,
).permute(0,3,1,2)
corresps[ins].update({"gm_cls": gm_warp_or_cls,"gm_certainty": certainty,}) if self.training else None
else:
corresps[ins].update({"gm_flow": gm_warp_or_cls,"gm_certainty": certainty,}) if self.training else None
flow = gm_warp_or_cls.detach()
if new_scale in self.conv_refiner:
corresps[ins].update({"flow_pre_delta": flow}) if self.training else None
delta_flow, delta_certainty = self.conv_refiner[new_scale](
f1_s, f2_s, flow, scale_factor = scale_factor, logits = certainty,
)
corresps[ins].update({"delta_flow": delta_flow,}) if self.training else None
displacement = ins*torch.stack((delta_flow[:, 0].float() / (self.refine_init * w),
delta_flow[:, 1].float() / (self.refine_init * h),),dim=1,)
flow = flow + displacement
certainty = (
certainty + delta_certainty
) # predict both certainty and displacement
corresps[ins].update({
"certainty": certainty,
"flow": flow,
})
if new_scale != "1":
flow = F.interpolate(
flow,
size=sizes[ins // 2],
mode=self.flow_upsample_mode,
)
certainty = F.interpolate(
certainty,
size=sizes[ins // 2],
mode=self.flow_upsample_mode,
)
if self.detach:
flow = flow.detach()
certainty = certainty.detach()
#torch.cuda.empty_cache()
return corresps
class RegressionMatcher(nn.Module):
def __init__(
self,
encoder,
decoder,
h=448,
w=448,
sample_mode = "threshold_balanced",
upsample_preds = False,
symmetric = False,
name = None,
attenuate_cert = None,
recrop_upsample = False,
):
super().__init__()
self.attenuate_cert = attenuate_cert
self.encoder = encoder
self.decoder = decoder
self.name = name
self.w_resized = w
self.h_resized = h
self.og_transforms = get_tuple_transform_ops(resize=None, normalize=True)
self.sample_mode = sample_mode
self.upsample_preds = upsample_preds
self.upsample_res = (14*16*6, 14*16*6)
self.symmetric = symmetric
self.sample_thresh = 0.05
self.recrop_upsample = recrop_upsample
def get_output_resolution(self):
if not self.upsample_preds:
return self.h_resized, self.w_resized
else:
return self.upsample_res
def extract_backbone_features(self, batch, batched = True, upsample = False):
x_q = batch["im_A"]
x_s = batch["im_B"]
if batched:
X = torch.cat((x_q, x_s), dim = 0)
feature_pyramid = self.encoder(X, upsample = upsample)
else:
feature_pyramid = self.encoder(x_q, upsample = upsample), self.encoder(x_s, upsample = upsample)
return feature_pyramid
def sample(
self,
matches,
certainty,
num=10000,
):
if "threshold" in self.sample_mode:
upper_thresh = self.sample_thresh
certainty = certainty.clone()
certainty[certainty > upper_thresh] = 1
matches, certainty = (
matches.reshape(-1, 4),
certainty.reshape(-1),
)
expansion_factor = 4 if "balanced" in self.sample_mode else 1
good_samples = torch.multinomial(certainty,
num_samples = min(expansion_factor*num, len(certainty)),
replacement=False)
good_matches, good_certainty = matches[good_samples], certainty[good_samples]
if "balanced" not in self.sample_mode:
return good_matches, good_certainty
density = kde(good_matches, std=0.1)
p = 1 / (density+1)
p[density < 10] = 1e-7 # Basically should have at least 10 perfect neighbours, or around 100 ok ones
balanced_samples = torch.multinomial(p,
num_samples = min(num,len(good_certainty)),
replacement=False)
return good_matches[balanced_samples], good_certainty[balanced_samples]
def forward(self, batch, batched = True, upsample = False, scale_factor = 1):
feature_pyramid = self.extract_backbone_features(batch, batched=batched, upsample = upsample)
if batched:
f_q_pyramid = {
scale: f_scale.chunk(2)[0] for scale, f_scale in feature_pyramid.items()
}
f_s_pyramid = {
scale: f_scale.chunk(2)[1] for scale, f_scale in feature_pyramid.items()
}
else:
f_q_pyramid, f_s_pyramid = feature_pyramid
corresps = self.decoder(f_q_pyramid,
f_s_pyramid,
upsample = upsample,
**(batch["corresps"] if "corresps" in batch else {}),
scale_factor=scale_factor)
return corresps
def forward_symmetric(self, batch, batched = True, upsample = False, scale_factor = 1):
feature_pyramid = self.extract_backbone_features(batch, batched = batched, upsample = upsample)
f_q_pyramid = feature_pyramid
f_s_pyramid = {
scale: torch.cat((f_scale.chunk(2)[1], f_scale.chunk(2)[0]), dim = 0)
for scale, f_scale in feature_pyramid.items()
}
corresps = self.decoder(f_q_pyramid,
f_s_pyramid,
upsample = upsample,
**(batch["corresps"] if "corresps" in batch else {}),
scale_factor=scale_factor)
return corresps
def conf_from_fb_consistency(self, flow_forward, flow_backward, th = 2):
# assumes that flow forward is of shape (..., H, W, 2)
has_batch = False
if len(flow_forward.shape) == 3:
flow_forward, flow_backward = flow_forward[None], flow_backward[None]
else:
has_batch = True
H,W = flow_forward.shape[-3:-1]
th_n = 2 * th / max(H,W)
coords = torch.stack(torch.meshgrid(
torch.linspace(-1 + 1 / W, 1 - 1 / W, W),
torch.linspace(-1 + 1 / H, 1 - 1 / H, H), indexing = "xy"),
dim = -1).to(flow_forward.device)
coords_fb = F.grid_sample(
flow_backward.permute(0, 3, 1, 2),
flow_forward,
align_corners=False, mode="bilinear").permute(0, 2, 3, 1)
diff = (coords - coords_fb).norm(dim=-1)
in_th = (diff < th_n).float()
if not has_batch:
in_th = in_th[0]
return in_th
def to_pixel_coordinates(self, coords, H_A, W_A, H_B = None, W_B = None):
if coords.shape[-1] == 2:
return self._to_pixel_coordinates(coords, H_A, W_A)
if isinstance(coords, (list, tuple)):
kpts_A, kpts_B = coords[0], coords[1]
else:
kpts_A, kpts_B = coords[...,:2], coords[...,2:]
return self._to_pixel_coordinates(kpts_A, H_A, W_A), self._to_pixel_coordinates(kpts_B, H_B, W_B)
def _to_pixel_coordinates(self, coords, H, W):
kpts = torch.stack((W/2 * (coords[...,0]+1), H/2 * (coords[...,1]+1)),axis=-1)
return kpts
def to_normalized_coordinates(self, coords, H_A, W_A, H_B, W_B):
if isinstance(coords, (list, tuple)):
kpts_A, kpts_B = coords[0], coords[1]
else:
kpts_A, kpts_B = coords[...,:2], coords[...,2:]
kpts_A = torch.stack((2/W_A * kpts_A[...,0] - 1, 2/H_A * kpts_A[...,1] - 1),axis=-1)
kpts_B = torch.stack((2/W_B * kpts_B[...,0] - 1, 2/H_B * kpts_B[...,1] - 1),axis=-1)
return kpts_A, kpts_B
def match_keypoints(self, x_A, x_B, warp, certainty, return_tuple = True, return_inds = False):
x_A_to_B = F.grid_sample(warp[...,-2:].permute(2,0,1)[None], x_A[None,None], align_corners = False, mode = "bilinear")[0,:,0].mT
cert_A_to_B = F.grid_sample(certainty[None,None,...], x_A[None,None], align_corners = False, mode = "bilinear")[0,0,0]
D = torch.cdist(x_A_to_B, x_B)
inds_A, inds_B = torch.nonzero((D == D.min(dim=-1, keepdim = True).values) * (D == D.min(dim=-2, keepdim = True).values) * (cert_A_to_B[:,None] > self.sample_thresh), as_tuple = True)
if return_tuple:
if return_inds:
return inds_A, inds_B
else:
return x_A[inds_A], x_B[inds_B]
else:
if return_inds:
return torch.cat((inds_A, inds_B),dim=-1)
else:
return torch.cat((x_A[inds_A], x_B[inds_B]),dim=-1)
def get_roi(self, certainty, W, H, thr = 0.025):
raise NotImplementedError("WIP, disable for now")
hs,ws = certainty.shape
certainty = certainty/certainty.sum(dim=(-1,-2))
cum_certainty_w = certainty.cumsum(dim=-1).sum(dim=-2)
cum_certainty_h = certainty.cumsum(dim=-2).sum(dim=-1)
print(cum_certainty_w)
print(torch.min(torch.nonzero(cum_certainty_w > thr)))
print(torch.min(torch.nonzero(cum_certainty_w < thr)))
left = int(W/ws * torch.min(torch.nonzero(cum_certainty_w > thr)))
right = int(W/ws * torch.max(torch.nonzero(cum_certainty_w < 1 - thr)))
top = int(H/hs * torch.min(torch.nonzero(cum_certainty_h > thr)))
bottom = int(H/hs * torch.max(torch.nonzero(cum_certainty_h < 1 - thr)))
print(left, right, top, bottom)
return left, top, right, bottom
def recrop(self, certainty, image_path):
roi = self.get_roi(certainty, *Image.open(image_path).size)
return Image.open(image_path).convert("RGB").crop(roi)
@torch.inference_mode()
def match(
self,
im_A_path: Union[str, os.PathLike, Image.Image],
im_B_path: Union[str, os.PathLike, Image.Image],
*args,
batched=False,
device = None,
):
if device is None:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if isinstance(im_A_path, (str, os.PathLike)):
im_A, im_B = Image.open(im_A_path).convert("RGB"), Image.open(im_B_path).convert("RGB")
else:
im_A, im_B = im_A_path, im_B_path
symmetric = self.symmetric
self.train(False)
with torch.no_grad():
if not batched:
b = 1
w, h = im_A.size
w2, h2 = im_B.size
# Get images in good format
ws = self.w_resized
hs = self.h_resized
test_transform = get_tuple_transform_ops(
resize=(hs, ws), normalize=True, clahe = False
)
im_A, im_B = test_transform((im_A, im_B))
batch = {"im_A": im_A[None].to(device), "im_B": im_B[None].to(device)}
else:
b, c, h, w = im_A.shape
b, c, h2, w2 = im_B.shape
assert w == w2 and h == h2, "For batched images we assume same size"
batch = {"im_A": im_A.to(device), "im_B": im_B.to(device)}
if h != self.h_resized or self.w_resized != w:
warn("Model resolution and batch resolution differ, may produce unexpected results")
hs, ws = h, w
finest_scale = 1
# Run matcher
if symmetric:
corresps = self.forward_symmetric(batch)
else:
corresps = self.forward(batch, batched = True)
if self.upsample_preds:
hs, ws = self.upsample_res
if self.attenuate_cert:
low_res_certainty = F.interpolate(
corresps[16]["certainty"], size=(hs, ws), align_corners=False, mode="bilinear"
)
cert_clamp = 0
factor = 0.5
low_res_certainty = factor*low_res_certainty*(low_res_certainty < cert_clamp)
if self.upsample_preds:
finest_corresps = corresps[finest_scale]
torch.cuda.empty_cache()
test_transform = get_tuple_transform_ops(
resize=(hs, ws), normalize=True
)
if self.recrop_upsample:
raise NotImplementedError("recrop_upsample not implemented")
certainty = corresps[finest_scale]["certainty"]
print(certainty.shape)
im_A = self.recrop(certainty[0,0], im_A_path)
im_B = self.recrop(certainty[1,0], im_B_path)
#TODO: need to adjust corresps when doing this
im_A, im_B = test_transform((im_A, im_B))
im_A, im_B = im_A[None].to(device), im_B[None].to(device)
scale_factor = math.sqrt(self.upsample_res[0] * self.upsample_res[1] / (self.w_resized * self.h_resized))
batch = {"im_A": im_A, "im_B": im_B, "corresps": finest_corresps}
if symmetric:
corresps = self.forward_symmetric(batch, upsample = True, batched=True, scale_factor = scale_factor)
else:
corresps = self.forward(batch, batched = True, upsample=True, scale_factor = scale_factor)
im_A_to_im_B = corresps[finest_scale]["flow"]
certainty = corresps[finest_scale]["certainty"] - (low_res_certainty if self.attenuate_cert else 0)
if finest_scale != 1:
im_A_to_im_B = F.interpolate(
im_A_to_im_B, size=(hs, ws), align_corners=False, mode="bilinear"
)
certainty = F.interpolate(
certainty, size=(hs, ws), align_corners=False, mode="bilinear"
)
im_A_to_im_B = im_A_to_im_B.permute(
0, 2, 3, 1
)
# Create im_A meshgrid
im_A_coords = torch.meshgrid(
(
torch.linspace(-1 + 1 / hs, 1 - 1 / hs, hs, device=device),
torch.linspace(-1 + 1 / ws, 1 - 1 / ws, ws, device=device),
)
)
im_A_coords = torch.stack((im_A_coords[1], im_A_coords[0]))
im_A_coords = im_A_coords[None].expand(b, 2, hs, ws)
certainty = certainty.sigmoid() # logits -> probs
im_A_coords = im_A_coords.permute(0, 2, 3, 1)
if (im_A_to_im_B.abs() > 1).any() and True:
wrong = (im_A_to_im_B.abs() > 1).sum(dim=-1) > 0
certainty[wrong[:,None]] = 0
im_A_to_im_B = torch.clamp(im_A_to_im_B, -1, 1)
if symmetric:
A_to_B, B_to_A = im_A_to_im_B.chunk(2)
q_warp = torch.cat((im_A_coords, A_to_B), dim=-1)
im_B_coords = im_A_coords
s_warp = torch.cat((B_to_A, im_B_coords), dim=-1)
warp = torch.cat((q_warp, s_warp),dim=2)
certainty = torch.cat(certainty.chunk(2), dim=3)
else:
warp = torch.cat((im_A_coords, im_A_to_im_B), dim=-1)
if batched:
return (
warp,
certainty[:, 0]
)
else:
return (
warp[0],
certainty[0, 0],
)
def visualize_warp(self, warp, certainty, im_A = None, im_B = None,
im_A_path = None, im_B_path = None, device = "cuda", symmetric = True, save_path = None, unnormalize = False):
#assert symmetric == True, "Currently assuming bidirectional warp, might update this if someone complains ;)"
H,W2,_ = warp.shape
W = W2//2 if symmetric else W2
if im_A is None:
from PIL import Image
im_A, im_B = Image.open(im_A_path).convert("RGB"), Image.open(im_B_path).convert("RGB")
if not isinstance(im_A, torch.Tensor):
im_A = im_A.resize((W,H))
im_B = im_B.resize((W,H))
x_B = (torch.tensor(np.array(im_B)) / 255).to(device).permute(2, 0, 1)
if symmetric:
x_A = (torch.tensor(np.array(im_A)) / 255).to(device).permute(2, 0, 1)
else:
if symmetric:
x_A = im_A
x_B = im_B
im_A_transfer_rgb = F.grid_sample(
x_B[None], warp[:,:W, 2:][None], mode="bilinear", align_corners=False
)[0]
if symmetric:
im_B_transfer_rgb = F.grid_sample(
x_A[None], warp[:, W:, :2][None], mode="bilinear", align_corners=False
)[0]
warp_im = torch.cat((im_A_transfer_rgb,im_B_transfer_rgb),dim=2)
white_im = torch.ones((H,2*W),device=device)
else:
warp_im = im_A_transfer_rgb
white_im = torch.ones((H, W), device = device)
vis_im = certainty * warp_im + (1 - certainty) * white_im
if save_path is not None:
from romatch.utils import tensor_to_pil
tensor_to_pil(vis_im, unnormalize=unnormalize).save(save_path)
return vis_im