Realcat
add: GIM (https://github.com/xuelunshen/gim)
4d4dd90
raw
history blame
959 Bytes
import time
import numpy as np
import torch
def benchmark(model, data, device, r=100):
timings = np.zeros((r, 1))
if device.type == "cuda":
starter = torch.cuda.Event(enable_timing=True)
ender = torch.cuda.Event(enable_timing=True)
# warmup
for _ in range(10):
_ = model(data)
# measurements
with torch.no_grad():
for rep in range(r):
if device.type == "cuda":
starter.record()
_ = model(data)
ender.record()
# sync gpu
torch.cuda.synchronize()
curr_time = starter.elapsed_time(ender)
else:
start = time.perf_counter()
_ = model(data)
curr_time = (time.perf_counter() - start) * 1e3
timings[rep] = curr_time
mean_syn = np.sum(timings) / r
std_syn = np.std(timings)
return {"mean": mean_syn, "std": std_syn}