Realcat
update:roma and examples
b075789
raw
history blame
7.14 kB
from einops.einops import rearrange
import torch
import torch.nn as nn
import torch.nn.functional as F
from romatch.utils.utils import get_gt_warp
import wandb
import romatch
import math
# This is slightly different than regular romatch due to significantly worse corresps
# The confidence loss is quite tricky here //Johan
class RobustLosses(nn.Module):
def __init__(
self,
robust=False,
center_coords=False,
scale_normalize=False,
ce_weight=0.01,
local_loss=True,
local_dist=None,
smooth_mask = False,
depth_interpolation_mode = "bilinear",
mask_depth_loss = False,
relative_depth_error_threshold = 0.05,
alpha = 1.,
c = 1e-3,
epe_mask_prob_th = None,
cert_only_on_consistent_depth = False,
):
super().__init__()
if local_dist is None:
local_dist = {}
self.robust = robust # measured in pixels
self.center_coords = center_coords
self.scale_normalize = scale_normalize
self.ce_weight = ce_weight
self.local_loss = local_loss
self.local_dist = local_dist
self.smooth_mask = smooth_mask
self.depth_interpolation_mode = depth_interpolation_mode
self.mask_depth_loss = mask_depth_loss
self.relative_depth_error_threshold = relative_depth_error_threshold
self.avg_overlap = dict()
self.alpha = alpha
self.c = c
self.epe_mask_prob_th = epe_mask_prob_th
self.cert_only_on_consistent_depth = cert_only_on_consistent_depth
def corr_volume_loss(self, mnn:torch.Tensor, corr_volume:torch.Tensor, scale):
b, h,w, h,w = corr_volume.shape
inv_temp = 10
corr_volume = corr_volume.reshape(-1, h*w, h*w)
nll = -(inv_temp*corr_volume).log_softmax(dim = 1) - (inv_temp*corr_volume).log_softmax(dim = 2)
corr_volume_loss = nll[mnn[:,0], mnn[:,1], mnn[:,2]].mean()
losses = {
f"gm_corr_volume_loss_{scale}": corr_volume_loss.mean(),
}
wandb.log(losses, step = romatch.GLOBAL_STEP)
return losses
def regression_loss(self, x2, prob, flow, certainty, scale, eps=1e-8, mode = "delta"):
epe = (flow.permute(0,2,3,1) - x2).norm(dim=-1)
if scale in self.local_dist:
prob = prob * (epe < (2 / 512) * (self.local_dist[scale] * scale)).float()
if scale == 1:
pck_05 = (epe[prob > 0.99] < 0.5 * (2/512)).float().mean()
wandb.log({"train_pck_05": pck_05}, step = romatch.GLOBAL_STEP)
if self.epe_mask_prob_th is not None:
# if too far away from gt, certainty should be 0
gt_cert = prob * (epe < scale * self.epe_mask_prob_th)
else:
gt_cert = prob
if self.cert_only_on_consistent_depth:
ce_loss = F.binary_cross_entropy_with_logits(certainty[:, 0][prob > 0], gt_cert[prob > 0])
else:
ce_loss = F.binary_cross_entropy_with_logits(certainty[:, 0], gt_cert)
a = self.alpha[scale] if isinstance(self.alpha, dict) else self.alpha
cs = self.c * scale
x = epe[prob > 0.99]
reg_loss = cs**a * ((x/(cs))**2 + 1**2)**(a/2)
if not torch.any(reg_loss):
reg_loss = (ce_loss * 0.0) # Prevent issues where prob is 0 everywhere
losses = {
f"{mode}_certainty_loss_{scale}": ce_loss.mean(),
f"{mode}_regression_loss_{scale}": reg_loss.mean(),
}
wandb.log(losses, step = romatch.GLOBAL_STEP)
return losses
def forward(self, corresps, batch):
scales = list(corresps.keys())
tot_loss = 0.0
# scale_weights due to differences in scale for regression gradients and classification gradients
for scale in scales:
scale_corresps = corresps[scale]
scale_certainty, flow_pre_delta, delta_cls, offset_scale, scale_gm_corr_volume, scale_gm_certainty, flow, scale_gm_flow = (
scale_corresps["certainty"],
scale_corresps.get("flow_pre_delta"),
scale_corresps.get("delta_cls"),
scale_corresps.get("offset_scale"),
scale_corresps.get("corr_volume"),
scale_corresps.get("gm_certainty"),
scale_corresps["flow"],
scale_corresps.get("gm_flow"),
)
if flow_pre_delta is not None:
flow_pre_delta = rearrange(flow_pre_delta, "b d h w -> b h w d")
b, h, w, d = flow_pre_delta.shape
else:
# _ = 1
b, _, h, w = scale_certainty.shape
gt_warp, gt_prob = get_gt_warp(
batch["im_A_depth"],
batch["im_B_depth"],
batch["T_1to2"],
batch["K1"],
batch["K2"],
H=h,
W=w,
)
x2 = gt_warp.float()
prob = gt_prob
if scale_gm_corr_volume is not None:
gt_warp_back, _ = get_gt_warp(
batch["im_B_depth"],
batch["im_A_depth"],
batch["T_1to2"].inverse(),
batch["K2"],
batch["K1"],
H=h,
W=w,
)
grid = torch.stack(torch.meshgrid(torch.linspace(-1+1/w, 1-1/w, w), torch.linspace(-1+1/h, 1-1/h, h), indexing='xy'), dim =-1).to(gt_warp.device)
#fwd_bck = F.grid_sample(gt_warp_back.permute(0,3,1,2), gt_warp, align_corners=False, mode = 'bilinear').permute(0,2,3,1)
#diff = (fwd_bck - grid).norm(dim = -1)
with torch.no_grad():
D_B = torch.cdist(gt_warp.float().reshape(-1,h*w,2), grid.reshape(-1,h*w,2))
D_A = torch.cdist(grid.reshape(-1,h*w,2), gt_warp_back.float().reshape(-1,h*w,2))
inds = torch.nonzero((D_B == D_B.min(dim=-1, keepdim = True).values)
* (D_A == D_A.min(dim=-2, keepdim = True).values)
* (D_B < 0.01)
* (D_A < 0.01))
gm_cls_losses = self.corr_volume_loss(inds, scale_gm_corr_volume, scale)
gm_loss = gm_cls_losses[f"gm_corr_volume_loss_{scale}"]
tot_loss = tot_loss + gm_loss
elif scale_gm_flow is not None:
gm_flow_losses = self.regression_loss(x2, prob, scale_gm_flow, scale_gm_certainty, scale, mode = "gm")
gm_loss = self.ce_weight * gm_flow_losses[f"gm_certainty_loss_{scale}"] + gm_flow_losses[f"gm_regression_loss_{scale}"]
tot_loss = tot_loss + gm_loss
delta_regression_losses = self.regression_loss(x2, prob, flow, scale_certainty, scale)
reg_loss = self.ce_weight * delta_regression_losses[f"delta_certainty_loss_{scale}"] + delta_regression_losses[f"delta_regression_loss_{scale}"]
tot_loss = tot_loss + reg_loss
return tot_loss