Realcat
add: GIM (https://github.com/xuelunshen/gim)
4d4dd90
raw
history blame
4.2 kB
import cv2
import numpy as np
import torch
def read_image(path, grayscale=False):
"""Read an image from path as RGB or grayscale"""
mode = cv2.IMREAD_GRAYSCALE if grayscale else cv2.IMREAD_COLOR
image = cv2.imread(str(path), mode)
if image is None:
raise IOError(f"Could not read image at {path}.")
if not grayscale:
image = image[..., ::-1]
return image
def numpy_image_to_torch(image):
"""Normalize the image tensor and reorder the dimensions."""
if image.ndim == 3:
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW
elif image.ndim == 2:
image = image[None] # add channel axis
else:
raise ValueError(f"Not an image: {image.shape}")
return torch.tensor(image / 255.0, dtype=torch.float)
def rotate_intrinsics(K, image_shape, rot):
"""image_shape is the shape of the image after rotation"""
assert rot <= 3
h, w = image_shape[:2][:: -1 if (rot % 2) else 1]
fx, fy, cx, cy = K[0, 0], K[1, 1], K[0, 2], K[1, 2]
rot = rot % 4
if rot == 1:
return np.array(
[[fy, 0.0, cy], [0.0, fx, w - cx], [0.0, 0.0, 1.0]], dtype=K.dtype
)
elif rot == 2:
return np.array(
[[fx, 0.0, w - cx], [0.0, fy, h - cy], [0.0, 0.0, 1.0]],
dtype=K.dtype,
)
else: # if rot == 3:
return np.array(
[[fy, 0.0, h - cy], [0.0, fx, cx], [0.0, 0.0, 1.0]], dtype=K.dtype
)
def rotate_pose_inplane(i_T_w, rot):
rotation_matrices = [
np.array(
[
[np.cos(r), -np.sin(r), 0.0, 0.0],
[np.sin(r), np.cos(r), 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 1.0],
],
dtype=np.float32,
)
for r in [np.deg2rad(d) for d in (0, 270, 180, 90)]
]
return np.dot(rotation_matrices[rot], i_T_w)
def scale_intrinsics(K, scales):
"""Scale intrinsics after resizing the corresponding image."""
scales = np.diag(np.concatenate([scales, [1.0]]))
return np.dot(scales.astype(K.dtype, copy=False), K)
def get_divisible_wh(w, h, df=None):
if df is not None:
w_new, h_new = map(lambda x: int(x // df * df), [w, h])
else:
w_new, h_new = w, h
return w_new, h_new
def resize(image, size, fn=None, interp="linear", df=None):
"""Resize an image to a fixed size, or according to max or min edge."""
h, w = image.shape[:2]
if isinstance(size, int):
scale = size / fn(h, w)
h_new, w_new = int(round(h * scale)), int(round(w * scale))
w_new, h_new = get_divisible_wh(w_new, h_new, df)
scale = (w_new / w, h_new / h)
elif isinstance(size, (tuple, list)):
h_new, w_new = size
scale = (w_new / w, h_new / h)
else:
raise ValueError(f"Incorrect new size: {size}")
mode = {
"linear": cv2.INTER_LINEAR,
"cubic": cv2.INTER_CUBIC,
"nearest": cv2.INTER_NEAREST,
"area": cv2.INTER_AREA,
}[interp]
return cv2.resize(image, (w_new, h_new), interpolation=mode), scale
def crop(image, size, random=True, other=None, K=None, return_bbox=False):
"""Random or deterministic crop of an image, adjust depth and intrinsics."""
h, w = image.shape[:2]
h_new, w_new = (size, size) if isinstance(size, int) else size
top = np.random.randint(0, h - h_new + 1) if random else 0
left = np.random.randint(0, w - w_new + 1) if random else 0
image = image[top : top + h_new, left : left + w_new]
ret = [image]
if other is not None:
ret += [other[top : top + h_new, left : left + w_new]]
if K is not None:
K[0, 2] -= left
K[1, 2] -= top
ret += [K]
if return_bbox:
ret += [(top, top + h_new, left, left + w_new)]
return ret
def zero_pad(size, *images):
"""zero pad images to size x size"""
ret = []
for image in images:
if image is None:
ret.append(None)
continue
h, w = image.shape[:2]
padded = np.zeros((size, size) + image.shape[2:], dtype=image.dtype)
padded[:h, :w] = image
ret.append(padded)
return ret