Realcat's picture
update: d2net lib
8c0ddef
raw
history blame
9.02 kB
import h5py
import numpy as np
from PIL import Image
import os
import torch
from torch.utils.data import Dataset
import time
from tqdm import tqdm
from lib.utils import preprocess_image
class MegaDepthDataset(Dataset):
def __init__(
self,
scene_list_path='megadepth_utils/train_scenes.txt',
scene_info_path='/local/dataset/megadepth/scene_info',
base_path='/local/dataset/megadepth',
train=True,
preprocessing=None,
min_overlap_ratio=.5,
max_overlap_ratio=1,
max_scale_ratio=np.inf,
pairs_per_scene=100,
image_size=256
):
self.scenes = []
with open(scene_list_path, 'r') as f:
lines = f.readlines()
for line in lines:
self.scenes.append(line.strip('\n'))
self.scene_info_path = scene_info_path
self.base_path = base_path
self.train = train
self.preprocessing = preprocessing
self.min_overlap_ratio = min_overlap_ratio
self.max_overlap_ratio = max_overlap_ratio
self.max_scale_ratio = max_scale_ratio
self.pairs_per_scene = pairs_per_scene
self.image_size = image_size
self.dataset = []
def build_dataset(self):
self.dataset = []
if not self.train:
np_random_state = np.random.get_state()
np.random.seed(42)
print('Building the validation dataset...')
else:
print('Building a new training dataset...')
for scene in tqdm(self.scenes, total=len(self.scenes)):
scene_info_path = os.path.join(
self.scene_info_path, '%s.npz' % scene
)
if not os.path.exists(scene_info_path):
continue
scene_info = np.load(scene_info_path, allow_pickle=True)
overlap_matrix = scene_info['overlap_matrix']
scale_ratio_matrix = scene_info['scale_ratio_matrix']
valid = np.logical_and(
np.logical_and(
overlap_matrix >= self.min_overlap_ratio,
overlap_matrix <= self.max_overlap_ratio
),
scale_ratio_matrix <= self.max_scale_ratio
)
pairs = np.vstack(np.where(valid))
try:
selected_ids = np.random.choice(
pairs.shape[1], self.pairs_per_scene
)
except:
continue
image_paths = scene_info['image_paths']
depth_paths = scene_info['depth_paths']
points3D_id_to_2D = scene_info['points3D_id_to_2D']
points3D_id_to_ndepth = scene_info['points3D_id_to_ndepth']
intrinsics = scene_info['intrinsics']
poses = scene_info['poses']
for pair_idx in selected_ids:
idx1 = pairs[0, pair_idx]
idx2 = pairs[1, pair_idx]
matches = np.array(list(
points3D_id_to_2D[idx1].keys() &
points3D_id_to_2D[idx2].keys()
))
# Scale filtering
matches_nd1 = np.array([points3D_id_to_ndepth[idx1][match] for match in matches])
matches_nd2 = np.array([points3D_id_to_ndepth[idx2][match] for match in matches])
scale_ratio = np.maximum(matches_nd1 / matches_nd2, matches_nd2 / matches_nd1)
matches = matches[np.where(scale_ratio <= self.max_scale_ratio)[0]]
point3D_id = np.random.choice(matches)
point2D1 = points3D_id_to_2D[idx1][point3D_id]
point2D2 = points3D_id_to_2D[idx2][point3D_id]
nd1 = points3D_id_to_ndepth[idx1][point3D_id]
nd2 = points3D_id_to_ndepth[idx2][point3D_id]
central_match = np.array([
point2D1[1], point2D1[0],
point2D2[1], point2D2[0]
])
self.dataset.append({
'image_path1': image_paths[idx1],
'depth_path1': depth_paths[idx1],
'intrinsics1': intrinsics[idx1],
'pose1': poses[idx1],
'image_path2': image_paths[idx2],
'depth_path2': depth_paths[idx2],
'intrinsics2': intrinsics[idx2],
'pose2': poses[idx2],
'central_match': central_match,
'scale_ratio': max(nd1 / nd2, nd2 / nd1)
})
np.random.shuffle(self.dataset)
if not self.train:
np.random.set_state(np_random_state)
def __len__(self):
return len(self.dataset)
def recover_pair(self, pair_metadata):
depth_path1 = os.path.join(
self.base_path, pair_metadata['depth_path1']
)
with h5py.File(depth_path1, 'r') as hdf5_file:
depth1 = np.array(hdf5_file['/depth'])
assert(np.min(depth1) >= 0)
image_path1 = os.path.join(
self.base_path, pair_metadata['image_path1']
)
image1 = Image.open(image_path1)
if image1.mode != 'RGB':
image1 = image1.convert('RGB')
image1 = np.array(image1)
assert(image1.shape[0] == depth1.shape[0] and image1.shape[1] == depth1.shape[1])
intrinsics1 = pair_metadata['intrinsics1']
pose1 = pair_metadata['pose1']
depth_path2 = os.path.join(
self.base_path, pair_metadata['depth_path2']
)
with h5py.File(depth_path2, 'r') as hdf5_file:
depth2 = np.array(hdf5_file['/depth'])
assert(np.min(depth2) >= 0)
image_path2 = os.path.join(
self.base_path, pair_metadata['image_path2']
)
image2 = Image.open(image_path2)
if image2.mode != 'RGB':
image2 = image2.convert('RGB')
image2 = np.array(image2)
assert(image2.shape[0] == depth2.shape[0] and image2.shape[1] == depth2.shape[1])
intrinsics2 = pair_metadata['intrinsics2']
pose2 = pair_metadata['pose2']
central_match = pair_metadata['central_match']
image1, bbox1, image2, bbox2 = self.crop(image1, image2, central_match)
depth1 = depth1[
bbox1[0] : bbox1[0] + self.image_size,
bbox1[1] : bbox1[1] + self.image_size
]
depth2 = depth2[
bbox2[0] : bbox2[0] + self.image_size,
bbox2[1] : bbox2[1] + self.image_size
]
return (
image1, depth1, intrinsics1, pose1, bbox1,
image2, depth2, intrinsics2, pose2, bbox2
)
def crop(self, image1, image2, central_match):
bbox1_i = max(int(central_match[0]) - self.image_size // 2, 0)
if bbox1_i + self.image_size >= image1.shape[0]:
bbox1_i = image1.shape[0] - self.image_size
bbox1_j = max(int(central_match[1]) - self.image_size // 2, 0)
if bbox1_j + self.image_size >= image1.shape[1]:
bbox1_j = image1.shape[1] - self.image_size
bbox2_i = max(int(central_match[2]) - self.image_size // 2, 0)
if bbox2_i + self.image_size >= image2.shape[0]:
bbox2_i = image2.shape[0] - self.image_size
bbox2_j = max(int(central_match[3]) - self.image_size // 2, 0)
if bbox2_j + self.image_size >= image2.shape[1]:
bbox2_j = image2.shape[1] - self.image_size
return (
image1[
bbox1_i : bbox1_i + self.image_size,
bbox1_j : bbox1_j + self.image_size
],
np.array([bbox1_i, bbox1_j]),
image2[
bbox2_i : bbox2_i + self.image_size,
bbox2_j : bbox2_j + self.image_size
],
np.array([bbox2_i, bbox2_j])
)
def __getitem__(self, idx):
(
image1, depth1, intrinsics1, pose1, bbox1,
image2, depth2, intrinsics2, pose2, bbox2
) = self.recover_pair(self.dataset[idx])
image1 = preprocess_image(image1, preprocessing=self.preprocessing)
image2 = preprocess_image(image2, preprocessing=self.preprocessing)
return {
'image1': torch.from_numpy(image1.astype(np.float32)),
'depth1': torch.from_numpy(depth1.astype(np.float32)),
'intrinsics1': torch.from_numpy(intrinsics1.astype(np.float32)),
'pose1': torch.from_numpy(pose1.astype(np.float32)),
'bbox1': torch.from_numpy(bbox1.astype(np.float32)),
'image2': torch.from_numpy(image2.astype(np.float32)),
'depth2': torch.from_numpy(depth2.astype(np.float32)),
'intrinsics2': torch.from_numpy(intrinsics2.astype(np.float32)),
'pose2': torch.from_numpy(pose2.astype(np.float32)),
'bbox2': torch.from_numpy(bbox2.astype(np.float32))
}