Realcat
add: GIM (https://github.com/xuelunshen/gim)
4d4dd90
raw
history blame
30 kB
import logging
import warnings
from copy import deepcopy
from pathlib import Path
import torch
import torch.utils.checkpoint
from torch import nn
from ...settings import DATA_PATH
from ..base_model import BaseModel
from ..utils.metrics import matcher_metrics
warnings.filterwarnings("ignore", category=UserWarning)
ETH_EPS = 1e-8
class GlueStick(BaseModel):
default_conf = {
"input_dim": 256,
"descriptor_dim": 256,
"weights": None,
"version": "v0.1_arxiv",
"keypoint_encoder": [32, 64, 128, 256],
"GNN_layers": ["self", "cross"] * 9,
"num_line_iterations": 1,
"line_attention": False,
"filter_threshold": 0.2,
"checkpointed": False,
"skip_init": False,
"inter_supervision": None,
"loss": {
"nll_weight": 1.0,
"nll_balancing": 0.5,
"inter_supervision": [0.3, 0.6],
},
}
required_data_keys = [
"view0",
"view1",
"keypoints0",
"keypoints1",
"descriptors0",
"descriptors1",
"keypoint_scores0",
"keypoint_scores1",
"lines0",
"lines1",
"lines_junc_idx0",
"lines_junc_idx1",
"line_scores0",
"line_scores1",
]
DEFAULT_LOSS_CONF = {"nll_weight": 1.0, "nll_balancing": 0.5}
url = (
"https://github.com/cvg/GlueStick/releases/download/{}/"
"checkpoint_GlueStick_MD.tar"
)
def _init(self, conf):
if conf.input_dim != conf.descriptor_dim:
self.input_proj = nn.Conv1d(
conf.input_dim, conf.descriptor_dim, kernel_size=1
)
nn.init.constant_(self.input_proj.bias, 0.0)
self.kenc = KeypointEncoder(conf.descriptor_dim, conf.keypoint_encoder)
self.lenc = EndPtEncoder(conf.descriptor_dim, conf.keypoint_encoder)
self.gnn = AttentionalGNN(
conf.descriptor_dim,
conf.GNN_layers,
checkpointed=conf.checkpointed,
inter_supervision=conf.inter_supervision,
num_line_iterations=conf.num_line_iterations,
line_attention=conf.line_attention,
)
self.final_proj = nn.Conv1d(
conf.descriptor_dim, conf.descriptor_dim, kernel_size=1
)
nn.init.constant_(self.final_proj.bias, 0.0)
nn.init.orthogonal_(self.final_proj.weight, gain=1)
self.final_line_proj = nn.Conv1d(
conf.descriptor_dim, conf.descriptor_dim, kernel_size=1
)
nn.init.constant_(self.final_line_proj.bias, 0.0)
nn.init.orthogonal_(self.final_line_proj.weight, gain=1)
if conf.inter_supervision is not None:
self.inter_line_proj = nn.ModuleList(
[
nn.Conv1d(conf.descriptor_dim, conf.descriptor_dim, kernel_size=1)
for _ in conf.inter_supervision
]
)
self.layer2idx = {}
for i, l in enumerate(conf.inter_supervision):
nn.init.constant_(self.inter_line_proj[i].bias, 0.0)
nn.init.orthogonal_(self.inter_line_proj[i].weight, gain=1)
self.layer2idx[l] = i
bin_score = torch.nn.Parameter(torch.tensor(1.0))
self.register_parameter("bin_score", bin_score)
line_bin_score = torch.nn.Parameter(torch.tensor(1.0))
self.register_parameter("line_bin_score", line_bin_score)
if conf.weights:
assert isinstance(conf.weights, (Path, str))
fname = DATA_PATH / "weights" / f"{conf.weights}_{conf.version}.tar"
fname.parent.mkdir(exist_ok=True, parents=True)
if Path(conf.weights).exists():
logging.info(f'Loading GlueStick model from "{conf.weights}"')
state_dict = torch.load(conf.weights, map_location="cpu")
elif fname.exists():
logging.info(f'Loading GlueStick model from "{fname}"')
state_dict = torch.load(fname, map_location="cpu")
else:
logging.info(
"Loading GlueStick model from " f'"{self.url.format(conf.version)}"'
)
state_dict = torch.hub.load_state_dict_from_url(
self.url.format(conf.version), file_name=fname, map_location="cpu"
)
if "model" in state_dict:
state_dict = {
k.replace("matcher.", ""): v
for k, v in state_dict["model"].items()
if "matcher." in k
}
state_dict = {
k.replace("module.", ""): v for k, v in state_dict.items()
}
self.load_state_dict(state_dict, strict=False)
def _forward(self, data):
device = data["keypoints0"].device
b_size = len(data["keypoints0"])
image_size0 = (
data["view0"]["image_size"]
if "image_size" in data["view0"]
else data["view0"]["image"].shape
)
image_size1 = (
data["view1"]["image_size"]
if "image_size" in data["view1"]
else data["view1"]["image"].shape
)
pred = {}
desc0, desc1 = data["descriptors0"].mT, data["descriptors1"].mT
kpts0, kpts1 = data["keypoints0"], data["keypoints1"]
n_kpts0, n_kpts1 = kpts0.shape[1], kpts1.shape[1]
n_lines0, n_lines1 = data["lines0"].shape[1], data["lines1"].shape[1]
if n_kpts0 == 0 or n_kpts1 == 0:
# No detected keypoints nor lines
pred["log_assignment"] = torch.zeros(
b_size, n_kpts0, n_kpts1, dtype=torch.float, device=device
)
pred["matches0"] = torch.full(
(b_size, n_kpts0), -1, device=device, dtype=torch.int64
)
pred["matches1"] = torch.full(
(b_size, n_kpts1), -1, device=device, dtype=torch.int64
)
pred["matching_scores0"] = torch.zeros(
(b_size, n_kpts0), device=device, dtype=torch.float32
)
pred["matching_scores1"] = torch.zeros(
(b_size, n_kpts1), device=device, dtype=torch.float32
)
pred["line_log_assignment"] = torch.zeros(
b_size, n_lines0, n_lines1, dtype=torch.float, device=device
)
pred["line_matches0"] = torch.full(
(b_size, n_lines0), -1, device=device, dtype=torch.int64
)
pred["line_matches1"] = torch.full(
(b_size, n_lines1), -1, device=device, dtype=torch.int64
)
pred["line_matching_scores0"] = torch.zeros(
(b_size, n_lines0), device=device, dtype=torch.float32
)
pred["line_matching_scores1"] = torch.zeros(
(b_size, n_kpts1), device=device, dtype=torch.float32
)
return pred
lines0 = data["lines0"].flatten(1, 2)
lines1 = data["lines1"].flatten(1, 2)
# [b_size, num_lines * 2]
lines_junc_idx0 = data["lines_junc_idx0"].flatten(1, 2)
lines_junc_idx1 = data["lines_junc_idx1"].flatten(1, 2)
if self.conf.input_dim != self.conf.descriptor_dim:
desc0 = self.input_proj(desc0)
desc1 = self.input_proj(desc1)
kpts0 = normalize_keypoints(kpts0, image_size0)
kpts1 = normalize_keypoints(kpts1, image_size1)
desc0 = desc0 + self.kenc(kpts0, data["keypoint_scores0"])
desc1 = desc1 + self.kenc(kpts1, data["keypoint_scores1"])
if n_lines0 != 0 and n_lines1 != 0:
# Pre-compute the line encodings
lines0 = normalize_keypoints(lines0, image_size0).reshape(
b_size, n_lines0, 2, 2
)
lines1 = normalize_keypoints(lines1, image_size1).reshape(
b_size, n_lines1, 2, 2
)
line_enc0 = self.lenc(lines0, data["line_scores0"])
line_enc1 = self.lenc(lines1, data["line_scores1"])
else:
line_enc0 = torch.zeros(
b_size,
self.conf.descriptor_dim,
n_lines0 * 2,
dtype=torch.float,
device=device,
)
line_enc1 = torch.zeros(
b_size,
self.conf.descriptor_dim,
n_lines1 * 2,
dtype=torch.float,
device=device,
)
desc0, desc1 = self.gnn(
desc0, desc1, line_enc0, line_enc1, lines_junc_idx0, lines_junc_idx1
)
# Match all points (KP and line junctions)
mdesc0, mdesc1 = self.final_proj(desc0), self.final_proj(desc1)
kp_scores = torch.einsum("bdn,bdm->bnm", mdesc0, mdesc1)
kp_scores = kp_scores / self.conf.descriptor_dim**0.5
kp_scores = log_double_softmax(kp_scores, self.bin_score)
m0, m1, mscores0, mscores1 = self._get_matches(kp_scores)
pred["log_assignment"] = kp_scores
pred["matches0"] = m0
pred["matches1"] = m1
pred["matching_scores0"] = mscores0
pred["matching_scores1"] = mscores1
# Match the lines
if n_lines0 > 0 and n_lines1 > 0:
(
line_scores,
m0_lines,
m1_lines,
mscores0_lines,
mscores1_lines,
raw_line_scores,
) = self._get_line_matches(
desc0[:, :, : 2 * n_lines0],
desc1[:, :, : 2 * n_lines1],
lines_junc_idx0,
lines_junc_idx1,
self.final_line_proj,
)
if self.conf.inter_supervision:
for layer in self.conf.inter_supervision:
(
line_scores_i,
m0_lines_i,
m1_lines_i,
mscores0_lines_i,
mscores1_lines_i,
_,
) = self._get_line_matches(
self.gnn.inter_layers[layer][0][:, :, : 2 * n_lines0],
self.gnn.inter_layers[layer][1][:, :, : 2 * n_lines1],
lines_junc_idx0,
lines_junc_idx1,
self.inter_line_proj[self.layer2idx[layer]],
)
pred[f"line_{layer}_log_assignment"] = line_scores_i
pred[f"line_{layer}_matches0"] = m0_lines_i
pred[f"line_{layer}_matches1"] = m1_lines_i
pred[f"line_{layer}_matching_scores0"] = mscores0_lines_i
pred[f"line_{layer}_matching_scores1"] = mscores1_lines_i
else:
line_scores = torch.zeros(
b_size, n_lines0, n_lines1, dtype=torch.float, device=device
)
m0_lines = torch.full(
(b_size, n_lines0), -1, device=device, dtype=torch.int64
)
m1_lines = torch.full(
(b_size, n_lines1), -1, device=device, dtype=torch.int64
)
mscores0_lines = torch.zeros(
(b_size, n_lines0), device=device, dtype=torch.float32
)
mscores1_lines = torch.zeros(
(b_size, n_lines1), device=device, dtype=torch.float32
)
raw_line_scores = torch.zeros(
b_size, n_lines0, n_lines1, dtype=torch.float, device=device
)
pred["line_log_assignment"] = line_scores
pred["line_matches0"] = m0_lines
pred["line_matches1"] = m1_lines
pred["line_matching_scores0"] = mscores0_lines
pred["line_matching_scores1"] = mscores1_lines
pred["raw_line_scores"] = raw_line_scores
return pred
def _get_matches(self, scores_mat):
max0 = scores_mat[:, :-1, :-1].max(2)
max1 = scores_mat[:, :-1, :-1].max(1)
m0, m1 = max0.indices, max1.indices
mutual0 = arange_like(m0, 1)[None] == m1.gather(1, m0)
mutual1 = arange_like(m1, 1)[None] == m0.gather(1, m1)
zero = scores_mat.new_tensor(0)
mscores0 = torch.where(mutual0, max0.values.exp(), zero)
mscores1 = torch.where(mutual1, mscores0.gather(1, m1), zero)
valid0 = mutual0 & (mscores0 > self.conf.filter_threshold)
valid1 = mutual1 & valid0.gather(1, m1)
m0 = torch.where(valid0, m0, m0.new_tensor(-1))
m1 = torch.where(valid1, m1, m1.new_tensor(-1))
return m0, m1, mscores0, mscores1
def _get_line_matches(
self, ldesc0, ldesc1, lines_junc_idx0, lines_junc_idx1, final_proj
):
mldesc0 = final_proj(ldesc0)
mldesc1 = final_proj(ldesc1)
line_scores = torch.einsum("bdn,bdm->bnm", mldesc0, mldesc1)
line_scores = line_scores / self.conf.descriptor_dim**0.5
# Get the line representation from the junction descriptors
n2_lines0 = lines_junc_idx0.shape[1]
n2_lines1 = lines_junc_idx1.shape[1]
line_scores = torch.gather(
line_scores,
dim=2,
index=lines_junc_idx1[:, None, :].repeat(1, line_scores.shape[1], 1),
)
line_scores = torch.gather(
line_scores,
dim=1,
index=lines_junc_idx0[:, :, None].repeat(1, 1, n2_lines1),
)
line_scores = line_scores.reshape((-1, n2_lines0 // 2, 2, n2_lines1 // 2, 2))
# Match either in one direction or the other
raw_line_scores = 0.5 * torch.maximum(
line_scores[:, :, 0, :, 0] + line_scores[:, :, 1, :, 1],
line_scores[:, :, 0, :, 1] + line_scores[:, :, 1, :, 0],
)
line_scores = log_double_softmax(raw_line_scores, self.line_bin_score)
m0_lines, m1_lines, mscores0_lines, mscores1_lines = self._get_matches(
line_scores
)
return (
line_scores,
m0_lines,
m1_lines,
mscores0_lines,
mscores1_lines,
raw_line_scores,
)
def sub_loss(self, pred, data, losses, bin_score, prefix="", layer=-1):
line_suffix = "" if layer == -1 else f"{layer}_"
layer_weight = (
1.0
if layer == -1
else self.conf.loss.inter_supervision[self.layer2idx[layer]]
)
positive = data["gt_" + prefix + "assignment"].float()
num_pos = torch.max(positive.sum((1, 2)), positive.new_tensor(1))
neg0 = (data["gt_" + prefix + "matches0"] == -1).float()
neg1 = (data["gt_" + prefix + "matches1"] == -1).float()
num_neg = torch.max(neg0.sum(1) + neg1.sum(1), neg0.new_tensor(1))
log_assignment = pred[prefix + line_suffix + "log_assignment"]
nll_pos = -(log_assignment[:, :-1, :-1] * positive).sum((1, 2))
nll_pos /= num_pos
nll_neg0 = -(log_assignment[:, :-1, -1] * neg0).sum(1)
nll_neg1 = -(log_assignment[:, -1, :-1] * neg1).sum(1)
nll_neg = (nll_neg0 + nll_neg1) / num_neg
nll = (
self.conf.loss.nll_balancing * nll_pos
+ (1 - self.conf.loss.nll_balancing) * nll_neg
)
losses[prefix + line_suffix + "assignment_nll"] = nll
if self.conf.loss.nll_weight > 0:
losses["total"] += nll * self.conf.loss.nll_weight * layer_weight
# Some statistics
if line_suffix == "":
losses[prefix + "num_matchable"] = num_pos
losses[prefix + "num_unmatchable"] = num_neg
losses[prefix + "sinkhorn_norm"] = (
log_assignment.exp()[:, :-1].sum(2).mean(1)
)
losses[prefix + "bin_score"] = bin_score[None]
return losses
def loss(self, pred, data):
losses = {"total": 0}
# If there are keypoints add their loss terms
if not (data["keypoints0"].shape[1] == 0 or data["keypoints1"].shape[1] == 0):
losses = self.sub_loss(pred, data, losses, self.bin_score, prefix="")
# If there are lines add their loss terms
if (
"lines0" in data
and "lines1" in data
and data["lines0"].shape[1] > 0
and data["lines1"].shape[1] > 0
):
losses = self.sub_loss(
pred, data, losses, self.line_bin_score, prefix="line_"
)
if self.conf.inter_supervision:
for layer in self.conf.inter_supervision:
losses = self.sub_loss(
pred, data, losses, self.line_bin_score, prefix="line_", layer=layer
)
# Compute the metrics
metrics = {}
if not self.training:
if (
"matches0" in pred
and pred["matches0"].shape[1] > 0
and pred["matches1"].shape[1] > 0
):
metrics = {**metrics, **matcher_metrics(pred, data, prefix="")}
if (
"line_matches0" in pred
and data["lines0"].shape[1] > 0
and data["lines1"].shape[1] > 0
):
metrics = {**metrics, **matcher_metrics(pred, data, prefix="line_")}
if self.conf.inter_supervision:
for layer in self.conf.inter_supervision:
inter_metrics = matcher_metrics(
pred, data, prefix=f"line_{layer}_", prefix_gt="line_"
)
metrics = {**metrics, **inter_metrics}
return losses, metrics
def MLP(channels, do_bn=True):
n = len(channels)
layers = []
for i in range(1, n):
layers.append(nn.Conv1d(channels[i - 1], channels[i], kernel_size=1, bias=True))
if i < (n - 1):
if do_bn:
layers.append(nn.BatchNorm1d(channels[i]))
layers.append(nn.ReLU())
return nn.Sequential(*layers)
def normalize_keypoints(kpts, shape_or_size):
if isinstance(shape_or_size, (tuple, list)):
# it"s a shape
h, w = shape_or_size[-2:]
size = kpts.new_tensor([[w, h]])
else:
# it"s a size
assert isinstance(shape_or_size, torch.Tensor)
size = shape_or_size.to(kpts)
c = size / 2
f = size.max(1, keepdim=True).values * 0.7 # somehow we used 0.7 for SG
return (kpts - c[:, None, :]) / f[:, None, :]
class KeypointEncoder(nn.Module):
def __init__(self, feature_dim, layers):
super().__init__()
self.encoder = MLP([3] + list(layers) + [feature_dim], do_bn=True)
nn.init.constant_(self.encoder[-1].bias, 0.0)
def forward(self, kpts, scores):
inputs = [kpts.transpose(1, 2), scores.unsqueeze(1)]
return self.encoder(torch.cat(inputs, dim=1))
class EndPtEncoder(nn.Module):
def __init__(self, feature_dim, layers):
super().__init__()
self.encoder = MLP([5] + list(layers) + [feature_dim], do_bn=True)
nn.init.constant_(self.encoder[-1].bias, 0.0)
def forward(self, endpoints, scores):
# endpoints should be [B, N, 2, 2]
# output is [B, feature_dim, N * 2]
b_size, n_pts, _, _ = endpoints.shape
assert tuple(endpoints.shape[-2:]) == (2, 2)
endpt_offset = (endpoints[:, :, 1] - endpoints[:, :, 0]).unsqueeze(2)
endpt_offset = torch.cat([endpt_offset, -endpt_offset], dim=2)
endpt_offset = endpt_offset.reshape(b_size, 2 * n_pts, 2).transpose(1, 2)
inputs = [
endpoints.flatten(1, 2).transpose(1, 2),
endpt_offset,
scores.repeat(1, 2).unsqueeze(1),
]
return self.encoder(torch.cat(inputs, dim=1))
@torch.cuda.amp.custom_fwd(cast_inputs=torch.float32)
def attention(query, key, value):
dim = query.shape[1]
scores = torch.einsum("bdhn,bdhm->bhnm", query, key) / dim**0.5
prob = torch.nn.functional.softmax(scores, dim=-1)
return torch.einsum("bhnm,bdhm->bdhn", prob, value), prob
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model):
super().__init__()
assert d_model % h == 0
self.dim = d_model // h
self.h = h
self.merge = nn.Conv1d(d_model, d_model, kernel_size=1)
self.proj = nn.ModuleList([deepcopy(self.merge) for _ in range(3)])
# self.prob = []
def forward(self, query, key, value):
b = query.size(0)
query, key, value = [
layer(x).view(b, self.dim, self.h, -1)
for layer, x in zip(self.proj, (query, key, value))
]
x, prob = attention(query, key, value)
# self.prob.append(prob.mean(dim=1))
return self.merge(x.contiguous().view(b, self.dim * self.h, -1))
class AttentionalPropagation(nn.Module):
def __init__(self, num_dim, num_heads, skip_init=False):
super().__init__()
self.attn = MultiHeadedAttention(num_heads, num_dim)
self.mlp = MLP([num_dim * 2, num_dim * 2, num_dim], do_bn=True)
nn.init.constant_(self.mlp[-1].bias, 0.0)
if skip_init:
self.register_parameter("scaling", nn.Parameter(torch.tensor(0.0)))
else:
self.scaling = 1.0
def forward(self, x, source):
message = self.attn(x, source, source)
return self.mlp(torch.cat([x, message], dim=1)) * self.scaling
class GNNLayer(nn.Module):
def __init__(self, feature_dim, layer_type, skip_init):
super().__init__()
assert layer_type in ["cross", "self"]
self.type = layer_type
self.update = AttentionalPropagation(feature_dim, 4, skip_init)
def forward(self, desc0, desc1):
if self.type == "cross":
src0, src1 = desc1, desc0
elif self.type == "self":
src0, src1 = desc0, desc1
else:
raise ValueError("Unknown layer type: " + self.type)
# self.update.attn.prob = []
delta0, delta1 = self.update(desc0, src0), self.update(desc1, src1)
desc0, desc1 = (desc0 + delta0), (desc1 + delta1)
return desc0, desc1
class LineLayer(nn.Module):
def __init__(self, feature_dim, line_attention=False):
super().__init__()
self.dim = feature_dim
self.mlp = MLP([self.dim * 3, self.dim * 2, self.dim], do_bn=True)
self.line_attention = line_attention
if line_attention:
self.proj_node = nn.Conv1d(self.dim, self.dim, kernel_size=1)
self.proj_neigh = nn.Conv1d(2 * self.dim, self.dim, kernel_size=1)
def get_endpoint_update(self, ldesc, line_enc, lines_junc_idx):
# ldesc is [bs, D, n_junc], line_enc [bs, D, n_lines * 2]
# and lines_junc_idx [bs, n_lines * 2]
# Create one message per line endpoint
b_size = lines_junc_idx.shape[0]
line_desc = torch.gather(
ldesc, 2, lines_junc_idx[:, None].repeat(1, self.dim, 1)
)
line_desc2 = line_desc.reshape(b_size, self.dim, -1, 2).flip([-1])
message = torch.cat(
[line_desc, line_desc2.flatten(2, 3).clone(), line_enc], dim=1
)
return self.mlp(message) # [b_size, D, n_lines * 2]
def get_endpoint_attention(self, ldesc, line_enc, lines_junc_idx):
# ldesc is [bs, D, n_junc], line_enc [bs, D, n_lines * 2]
# and lines_junc_idx [bs, n_lines * 2]
b_size = lines_junc_idx.shape[0]
expanded_lines_junc_idx = lines_junc_idx[:, None].repeat(1, self.dim, 1)
# Query: desc of the current node
query = self.proj_node(ldesc) # [b_size, D, n_junc]
query = torch.gather(query, 2, expanded_lines_junc_idx)
# query is [b_size, D, n_lines * 2]
# Key: combination of neighboring desc and line encodings
line_desc = torch.gather(ldesc, 2, expanded_lines_junc_idx)
line_desc2 = line_desc.reshape(b_size, self.dim, -1, 2).flip([-1])
key = self.proj_neigh(
torch.cat([line_desc2.flatten(2, 3).clone(), line_enc], dim=1)
) # [b_size, D, n_lines * 2]
# Compute the attention weights with a custom softmax per junction
prob = (query * key).sum(dim=1) / self.dim**0.5 # [b_size, n_lines * 2]
prob = torch.exp(prob - prob.max())
denom = torch.zeros_like(ldesc[:, 0]).scatter_reduce_(
dim=1, index=lines_junc_idx, src=prob, reduce="sum", include_self=False
) # [b_size, n_junc]
denom = torch.gather(denom, 1, lines_junc_idx) # [b_size, n_lines * 2]
prob = prob / (denom + ETH_EPS)
return prob # [b_size, n_lines * 2]
def forward(
self, ldesc0, ldesc1, line_enc0, line_enc1, lines_junc_idx0, lines_junc_idx1
):
# Gather the endpoint updates
lupdate0 = self.get_endpoint_update(ldesc0, line_enc0, lines_junc_idx0)
lupdate1 = self.get_endpoint_update(ldesc1, line_enc1, lines_junc_idx1)
update0, update1 = torch.zeros_like(ldesc0), torch.zeros_like(ldesc1)
dim = ldesc0.shape[1]
if self.line_attention:
# Compute an attention for each neighbor and do a weighted average
prob0 = self.get_endpoint_attention(ldesc0, line_enc0, lines_junc_idx0)
lupdate0 = lupdate0 * prob0[:, None]
update0 = update0.scatter_reduce_(
dim=2,
index=lines_junc_idx0[:, None].repeat(1, dim, 1),
src=lupdate0,
reduce="sum",
include_self=False,
)
prob1 = self.get_endpoint_attention(ldesc1, line_enc1, lines_junc_idx1)
lupdate1 = lupdate1 * prob1[:, None]
update1 = update1.scatter_reduce_(
dim=2,
index=lines_junc_idx1[:, None].repeat(1, dim, 1),
src=lupdate1,
reduce="sum",
include_self=False,
)
else:
# Average the updates for each junction (requires torch > 1.12)
update0 = update0.scatter_reduce_(
dim=2,
index=lines_junc_idx0[:, None].repeat(1, dim, 1),
src=lupdate0,
reduce="mean",
include_self=False,
)
update1 = update1.scatter_reduce_(
dim=2,
index=lines_junc_idx1[:, None].repeat(1, dim, 1),
src=lupdate1,
reduce="mean",
include_self=False,
)
# Update
ldesc0 = ldesc0 + update0
ldesc1 = ldesc1 + update1
return ldesc0, ldesc1
class AttentionalGNN(nn.Module):
def __init__(
self,
feature_dim,
layer_types,
checkpointed=False,
skip=False,
inter_supervision=None,
num_line_iterations=1,
line_attention=False,
):
super().__init__()
self.checkpointed = checkpointed
self.inter_supervision = inter_supervision
self.num_line_iterations = num_line_iterations
self.inter_layers = {}
self.layers = nn.ModuleList(
[GNNLayer(feature_dim, layer_type, skip) for layer_type in layer_types]
)
self.line_layers = nn.ModuleList(
[
LineLayer(feature_dim, line_attention)
for _ in range(len(layer_types) // 2)
]
)
def forward(
self, desc0, desc1, line_enc0, line_enc1, lines_junc_idx0, lines_junc_idx1
):
for i, layer in enumerate(self.layers):
if self.checkpointed:
desc0, desc1 = torch.utils.checkpoint.checkpoint(
layer, desc0, desc1, preserve_rng_state=False
)
else:
desc0, desc1 = layer(desc0, desc1)
if (
layer.type == "self"
and lines_junc_idx0.shape[1] > 0
and lines_junc_idx1.shape[1] > 0
):
# Add line self attention layers after every self layer
for _ in range(self.num_line_iterations):
if self.checkpointed:
desc0, desc1 = torch.utils.checkpoint.checkpoint(
self.line_layers[i // 2],
desc0,
desc1,
line_enc0,
line_enc1,
lines_junc_idx0,
lines_junc_idx1,
preserve_rng_state=False,
)
else:
desc0, desc1 = self.line_layers[i // 2](
desc0,
desc1,
line_enc0,
line_enc1,
lines_junc_idx0,
lines_junc_idx1,
)
# Optionally store the line descriptor at intermediate layers
if (
self.inter_supervision is not None
and (i // 2) in self.inter_supervision
and layer.type == "cross"
):
self.inter_layers[i // 2] = (desc0.clone(), desc1.clone())
return desc0, desc1
def log_double_softmax(scores, bin_score):
b, m, n = scores.shape
bin_ = bin_score[None, None, None]
scores0 = torch.cat([scores, bin_.expand(b, m, 1)], 2)
scores1 = torch.cat([scores, bin_.expand(b, 1, n)], 1)
scores0 = torch.nn.functional.log_softmax(scores0, 2)
scores1 = torch.nn.functional.log_softmax(scores1, 1)
scores = scores.new_full((b, m + 1, n + 1), 0)
scores[:, :m, :n] = (scores0[:, :, :n] + scores1[:, :m, :]) / 2
scores[:, :-1, -1] = scores0[:, :, -1]
scores[:, -1, :-1] = scores1[:, -1, :]
return scores
def arange_like(x, dim):
return x.new_ones(x.shape[dim]).cumsum(0) - 1 # traceable in 1.1