Spaces:
Running
Running
image-matching-webui
/
third_party
/RoMa
/romatch
/benchmarks
/hpatches_sequences_homog_benchmark.py
from PIL import Image | |
import numpy as np | |
import os | |
from tqdm import tqdm | |
from romatch.utils import pose_auc | |
import cv2 | |
class HpatchesHomogBenchmark: | |
"""Hpatches grid goes from [0,n-1] instead of [0.5,n-0.5]""" | |
def __init__(self, dataset_path) -> None: | |
seqs_dir = "hpatches-sequences-release" | |
self.seqs_path = os.path.join(dataset_path, seqs_dir) | |
self.seq_names = sorted(os.listdir(self.seqs_path)) | |
# Ignore seqs is same as LoFTR. | |
self.ignore_seqs = set( | |
[ | |
"i_contruction", | |
"i_crownnight", | |
"i_dc", | |
"i_pencils", | |
"i_whitebuilding", | |
"v_artisans", | |
"v_astronautis", | |
"v_talent", | |
] | |
) | |
def convert_coordinates(self, im_A_coords, im_A_to_im_B, wq, hq, wsup, hsup): | |
offset = 0.5 # Hpatches assumes that the center of the top-left pixel is at [0,0] (I think) | |
im_A_coords = ( | |
np.stack( | |
( | |
wq * (im_A_coords[..., 0] + 1) / 2, | |
hq * (im_A_coords[..., 1] + 1) / 2, | |
), | |
axis=-1, | |
) | |
- offset | |
) | |
im_A_to_im_B = ( | |
np.stack( | |
( | |
wsup * (im_A_to_im_B[..., 0] + 1) / 2, | |
hsup * (im_A_to_im_B[..., 1] + 1) / 2, | |
), | |
axis=-1, | |
) | |
- offset | |
) | |
return im_A_coords, im_A_to_im_B | |
def benchmark(self, model, model_name = None): | |
n_matches = [] | |
homog_dists = [] | |
for seq_idx, seq_name in tqdm( | |
enumerate(self.seq_names), total=len(self.seq_names) | |
): | |
im_A_path = os.path.join(self.seqs_path, seq_name, "1.ppm") | |
im_A = Image.open(im_A_path) | |
w1, h1 = im_A.size | |
for im_idx in range(2, 7): | |
im_B_path = os.path.join(self.seqs_path, seq_name, f"{im_idx}.ppm") | |
im_B = Image.open(im_B_path) | |
w2, h2 = im_B.size | |
H = np.loadtxt( | |
os.path.join(self.seqs_path, seq_name, "H_1_" + str(im_idx)) | |
) | |
dense_matches, dense_certainty = model.match( | |
im_A_path, im_B_path | |
) | |
good_matches, _ = model.sample(dense_matches, dense_certainty, 5000) | |
pos_a, pos_b = self.convert_coordinates( | |
good_matches[:, :2], good_matches[:, 2:], w1, h1, w2, h2 | |
) | |
try: | |
H_pred, inliers = cv2.findHomography( | |
pos_a, | |
pos_b, | |
method = cv2.RANSAC, | |
confidence = 0.99999, | |
ransacReprojThreshold = 3 * min(w2, h2) / 480, | |
) | |
except: | |
H_pred = None | |
if H_pred is None: | |
H_pred = np.zeros((3, 3)) | |
H_pred[2, 2] = 1.0 | |
corners = np.array( | |
[[0, 0, 1], [0, h1 - 1, 1], [w1 - 1, 0, 1], [w1 - 1, h1 - 1, 1]] | |
) | |
real_warped_corners = np.dot(corners, np.transpose(H)) | |
real_warped_corners = ( | |
real_warped_corners[:, :2] / real_warped_corners[:, 2:] | |
) | |
warped_corners = np.dot(corners, np.transpose(H_pred)) | |
warped_corners = warped_corners[:, :2] / warped_corners[:, 2:] | |
mean_dist = np.mean( | |
np.linalg.norm(real_warped_corners - warped_corners, axis=1) | |
) / (min(w2, h2) / 480.0) | |
homog_dists.append(mean_dist) | |
n_matches = np.array(n_matches) | |
thresholds = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] | |
auc = pose_auc(np.array(homog_dists), thresholds) | |
return { | |
"hpatches_homog_auc_3": auc[2], | |
"hpatches_homog_auc_5": auc[4], | |
"hpatches_homog_auc_10": auc[9], | |
} | |