Spaces:
Running
Running
import numpy as np | |
import torch | |
def to_homogeneous(points): | |
"""Convert N-dimensional points to homogeneous coordinates. | |
Args: | |
points: torch.Tensor or numpy.ndarray with size (..., N). | |
Returns: | |
A torch.Tensor or numpy.ndarray with size (..., N+1). | |
""" | |
if isinstance(points, torch.Tensor): | |
pad = points.new_ones(points.shape[:-1] + (1,)) | |
return torch.cat([points, pad], dim=-1) | |
elif isinstance(points, np.ndarray): | |
pad = np.ones((points.shape[:-1] + (1,)), dtype=points.dtype) | |
return np.concatenate([points, pad], axis=-1) | |
else: | |
raise ValueError | |
def from_homogeneous(points, eps=0.0): | |
"""Remove the homogeneous dimension of N-dimensional points. | |
Args: | |
points: torch.Tensor or numpy.ndarray with size (..., N+1). | |
eps: Epsilon value to prevent zero division. | |
Returns: | |
A torch.Tensor or numpy ndarray with size (..., N). | |
""" | |
return points[..., :-1] / (points[..., -1:] + eps) | |
def batched_eye_like(x: torch.Tensor, n: int): | |
"""Create a batch of identity matrices. | |
Args: | |
x: a reference torch.Tensor whose batch dimension will be copied. | |
n: the size of each identity matrix. | |
Returns: | |
A torch.Tensor of size (B, n, n), with same dtype and device as x. | |
""" | |
return torch.eye(n).to(x)[None].repeat(len(x), 1, 1) | |
def skew_symmetric(v): | |
"""Create a skew-symmetric matrix from a (batched) vector of size (..., 3).""" | |
z = torch.zeros_like(v[..., 0]) | |
M = torch.stack( | |
[ | |
z, | |
-v[..., 2], | |
v[..., 1], | |
v[..., 2], | |
z, | |
-v[..., 0], | |
-v[..., 1], | |
v[..., 0], | |
z, | |
], | |
dim=-1, | |
).reshape(v.shape[:-1] + (3, 3)) | |
return M | |
def transform_points(T, points): | |
return from_homogeneous(to_homogeneous(points) @ T.transpose(-1, -2)) | |
def is_inside(pts, shape): | |
return (pts > 0).all(-1) & (pts < shape[:, None]).all(-1) | |
def so3exp_map(w, eps: float = 1e-7): | |
"""Compute rotation matrices from batched twists. | |
Args: | |
w: batched 3D axis-angle vectors of size (..., 3). | |
Returns: | |
A batch of rotation matrices of size (..., 3, 3). | |
""" | |
theta = w.norm(p=2, dim=-1, keepdim=True) | |
small = theta < eps | |
div = torch.where(small, torch.ones_like(theta), theta) | |
W = skew_symmetric(w / div) | |
theta = theta[..., None] # ... x 1 x 1 | |
res = W * torch.sin(theta) + (W @ W) * (1 - torch.cos(theta)) | |
res = torch.where(small[..., None], W, res) # first-order Taylor approx | |
return torch.eye(3).to(W) + res | |
def distort_points(pts, dist): | |
"""Distort normalized 2D coordinates | |
and check for validity of the distortion model. | |
""" | |
dist = dist.unsqueeze(-2) # add point dimension | |
ndist = dist.shape[-1] | |
undist = pts | |
valid = torch.ones(pts.shape[:-1], device=pts.device, dtype=torch.bool) | |
if ndist > 0: | |
k1, k2 = dist[..., :2].split(1, -1) | |
r2 = torch.sum(pts**2, -1, keepdim=True) | |
radial = k1 * r2 + k2 * r2**2 | |
undist = undist + pts * radial | |
# The distortion model is supposedly only valid within the image | |
# boundaries. Because of the negative radial distortion, points that | |
# are far outside of the boundaries might actually be mapped back | |
# within the image. To account for this, we discard points that are | |
# beyond the inflection point of the distortion model, | |
# e.g. such that d(r + k_1 r^3 + k2 r^5)/dr = 0 | |
limited = ((k2 > 0) & ((9 * k1**2 - 20 * k2) > 0)) | ((k2 <= 0) & (k1 > 0)) | |
limit = torch.abs( | |
torch.where( | |
k2 > 0, | |
(torch.sqrt(9 * k1**2 - 20 * k2) - 3 * k1) / (10 * k2), | |
1 / (3 * k1), | |
) | |
) | |
valid = valid & torch.squeeze(~limited | (r2 < limit), -1) | |
if ndist > 2: | |
p12 = dist[..., 2:] | |
p21 = p12.flip(-1) | |
uv = torch.prod(pts, -1, keepdim=True) | |
undist = undist + 2 * p12 * uv + p21 * (r2 + 2 * pts**2) | |
# TODO: handle tangential boundaries | |
return undist, valid | |
def J_distort_points(pts, dist): | |
dist = dist.unsqueeze(-2) # add point dimension | |
ndist = dist.shape[-1] | |
J_diag = torch.ones_like(pts) | |
J_cross = torch.zeros_like(pts) | |
if ndist > 0: | |
k1, k2 = dist[..., :2].split(1, -1) | |
r2 = torch.sum(pts**2, -1, keepdim=True) | |
uv = torch.prod(pts, -1, keepdim=True) | |
radial = k1 * r2 + k2 * r2**2 | |
d_radial = 2 * k1 + 4 * k2 * r2 | |
J_diag += radial + (pts**2) * d_radial | |
J_cross += uv * d_radial | |
if ndist > 2: | |
p12 = dist[..., 2:] | |
p21 = p12.flip(-1) | |
J_diag += 2 * p12 * pts.flip(-1) + 6 * p21 * pts | |
J_cross += 2 * p12 * pts + 2 * p21 * pts.flip(-1) | |
J = torch.diag_embed(J_diag) + torch.diag_embed(J_cross).flip(-1) | |
return J | |
def get_image_coords(img): | |
h, w = img.shape[-2:] | |
return ( | |
torch.stack( | |
torch.meshgrid( | |
torch.arange(h, dtype=torch.float32, device=img.device), | |
torch.arange(w, dtype=torch.float32, device=img.device), | |
indexing="ij", | |
)[::-1], | |
dim=0, | |
).permute(1, 2, 0) | |
)[None] + 0.5 | |