Realcat
add: GIM (https://github.com/xuelunshen/gim)
4d4dd90
raw
history blame
5.4 kB
import numpy as np
import torch
def to_homogeneous(points):
"""Convert N-dimensional points to homogeneous coordinates.
Args:
points: torch.Tensor or numpy.ndarray with size (..., N).
Returns:
A torch.Tensor or numpy.ndarray with size (..., N+1).
"""
if isinstance(points, torch.Tensor):
pad = points.new_ones(points.shape[:-1] + (1,))
return torch.cat([points, pad], dim=-1)
elif isinstance(points, np.ndarray):
pad = np.ones((points.shape[:-1] + (1,)), dtype=points.dtype)
return np.concatenate([points, pad], axis=-1)
else:
raise ValueError
def from_homogeneous(points, eps=0.0):
"""Remove the homogeneous dimension of N-dimensional points.
Args:
points: torch.Tensor or numpy.ndarray with size (..., N+1).
eps: Epsilon value to prevent zero division.
Returns:
A torch.Tensor or numpy ndarray with size (..., N).
"""
return points[..., :-1] / (points[..., -1:] + eps)
def batched_eye_like(x: torch.Tensor, n: int):
"""Create a batch of identity matrices.
Args:
x: a reference torch.Tensor whose batch dimension will be copied.
n: the size of each identity matrix.
Returns:
A torch.Tensor of size (B, n, n), with same dtype and device as x.
"""
return torch.eye(n).to(x)[None].repeat(len(x), 1, 1)
def skew_symmetric(v):
"""Create a skew-symmetric matrix from a (batched) vector of size (..., 3)."""
z = torch.zeros_like(v[..., 0])
M = torch.stack(
[
z,
-v[..., 2],
v[..., 1],
v[..., 2],
z,
-v[..., 0],
-v[..., 1],
v[..., 0],
z,
],
dim=-1,
).reshape(v.shape[:-1] + (3, 3))
return M
def transform_points(T, points):
return from_homogeneous(to_homogeneous(points) @ T.transpose(-1, -2))
def is_inside(pts, shape):
return (pts > 0).all(-1) & (pts < shape[:, None]).all(-1)
def so3exp_map(w, eps: float = 1e-7):
"""Compute rotation matrices from batched twists.
Args:
w: batched 3D axis-angle vectors of size (..., 3).
Returns:
A batch of rotation matrices of size (..., 3, 3).
"""
theta = w.norm(p=2, dim=-1, keepdim=True)
small = theta < eps
div = torch.where(small, torch.ones_like(theta), theta)
W = skew_symmetric(w / div)
theta = theta[..., None] # ... x 1 x 1
res = W * torch.sin(theta) + (W @ W) * (1 - torch.cos(theta))
res = torch.where(small[..., None], W, res) # first-order Taylor approx
return torch.eye(3).to(W) + res
@torch.jit.script
def distort_points(pts, dist):
"""Distort normalized 2D coordinates
and check for validity of the distortion model.
"""
dist = dist.unsqueeze(-2) # add point dimension
ndist = dist.shape[-1]
undist = pts
valid = torch.ones(pts.shape[:-1], device=pts.device, dtype=torch.bool)
if ndist > 0:
k1, k2 = dist[..., :2].split(1, -1)
r2 = torch.sum(pts**2, -1, keepdim=True)
radial = k1 * r2 + k2 * r2**2
undist = undist + pts * radial
# The distortion model is supposedly only valid within the image
# boundaries. Because of the negative radial distortion, points that
# are far outside of the boundaries might actually be mapped back
# within the image. To account for this, we discard points that are
# beyond the inflection point of the distortion model,
# e.g. such that d(r + k_1 r^3 + k2 r^5)/dr = 0
limited = ((k2 > 0) & ((9 * k1**2 - 20 * k2) > 0)) | ((k2 <= 0) & (k1 > 0))
limit = torch.abs(
torch.where(
k2 > 0,
(torch.sqrt(9 * k1**2 - 20 * k2) - 3 * k1) / (10 * k2),
1 / (3 * k1),
)
)
valid = valid & torch.squeeze(~limited | (r2 < limit), -1)
if ndist > 2:
p12 = dist[..., 2:]
p21 = p12.flip(-1)
uv = torch.prod(pts, -1, keepdim=True)
undist = undist + 2 * p12 * uv + p21 * (r2 + 2 * pts**2)
# TODO: handle tangential boundaries
return undist, valid
@torch.jit.script
def J_distort_points(pts, dist):
dist = dist.unsqueeze(-2) # add point dimension
ndist = dist.shape[-1]
J_diag = torch.ones_like(pts)
J_cross = torch.zeros_like(pts)
if ndist > 0:
k1, k2 = dist[..., :2].split(1, -1)
r2 = torch.sum(pts**2, -1, keepdim=True)
uv = torch.prod(pts, -1, keepdim=True)
radial = k1 * r2 + k2 * r2**2
d_radial = 2 * k1 + 4 * k2 * r2
J_diag += radial + (pts**2) * d_radial
J_cross += uv * d_radial
if ndist > 2:
p12 = dist[..., 2:]
p21 = p12.flip(-1)
J_diag += 2 * p12 * pts.flip(-1) + 6 * p21 * pts
J_cross += 2 * p12 * pts + 2 * p21 * pts.flip(-1)
J = torch.diag_embed(J_diag) + torch.diag_embed(J_cross).flip(-1)
return J
def get_image_coords(img):
h, w = img.shape[-2:]
return (
torch.stack(
torch.meshgrid(
torch.arange(h, dtype=torch.float32, device=img.device),
torch.arange(w, dtype=torch.float32, device=img.device),
indexing="ij",
)[::-1],
dim=0,
).permute(1, 2, 0)
)[None] + 0.5