Spaces:
Restarting
Restarting
import torch | |
from fvcore.nn import FlopCountAnalysis | |
from einops.einops import rearrange | |
from src import get_model_cfg | |
from src.models.backbone import FPN as topicfm_featnet | |
from src.models.modules import TopicFormer | |
from src.utils.dataset import read_scannet_gray | |
from third_party.loftr.src.loftr.utils.cvpr_ds_config import default_cfg | |
from third_party.loftr.src.loftr.backbone import ResNetFPN_8_2 as loftr_featnet | |
from third_party.loftr.src.loftr.loftr_module import LocalFeatureTransformer | |
def feat_net_flops(feat_net, config, input): | |
model = feat_net(config) | |
model.eval() | |
flops = FlopCountAnalysis(model, input) | |
feat_c, _ = model(input) | |
return feat_c, flops.total() / 1e9 | |
def coarse_model_flops(coarse_model, config, inputs): | |
model = coarse_model(config) | |
model.eval() | |
flops = FlopCountAnalysis(model, inputs) | |
return flops.total() / 1e9 | |
if __name__ == "__main__": | |
path_img0 = "assets/scannet_sample_images/scene0711_00_frame-001680.jpg" | |
path_img1 = "assets/scannet_sample_images/scene0711_00_frame-001995.jpg" | |
img0, img1 = read_scannet_gray(path_img0), read_scannet_gray(path_img1) | |
img0, img1 = img0.unsqueeze(0), img1.unsqueeze(0) | |
# LoFTR | |
loftr_conf = dict(default_cfg) | |
feat_c0, loftr_featnet_flops0 = feat_net_flops( | |
loftr_featnet, loftr_conf["resnetfpn"], img0 | |
) | |
feat_c1, loftr_featnet_flops1 = feat_net_flops( | |
loftr_featnet, loftr_conf["resnetfpn"], img1 | |
) | |
print( | |
"FLOPs of feature extraction in LoFTR: {} GFLOPs".format( | |
(loftr_featnet_flops0 + loftr_featnet_flops1) / 2 | |
) | |
) | |
feat_c0 = rearrange(feat_c0, "n c h w -> n (h w) c") | |
feat_c1 = rearrange(feat_c1, "n c h w -> n (h w) c") | |
loftr_coarse_model_flops = coarse_model_flops( | |
LocalFeatureTransformer, loftr_conf["coarse"], (feat_c0, feat_c1) | |
) | |
print( | |
"FLOPs of coarse matching model in LoFTR: {} GFLOPs".format( | |
loftr_coarse_model_flops | |
) | |
) | |
# TopicFM | |
topicfm_conf = get_model_cfg() | |
feat_c0, topicfm_featnet_flops0 = feat_net_flops( | |
topicfm_featnet, topicfm_conf["fpn"], img0 | |
) | |
feat_c1, topicfm_featnet_flops1 = feat_net_flops( | |
topicfm_featnet, topicfm_conf["fpn"], img1 | |
) | |
print( | |
"FLOPs of feature extraction in TopicFM: {} GFLOPs".format( | |
(topicfm_featnet_flops0 + topicfm_featnet_flops1) / 2 | |
) | |
) | |
feat_c0 = rearrange(feat_c0, "n c h w -> n (h w) c") | |
feat_c1 = rearrange(feat_c1, "n c h w -> n (h w) c") | |
topicfm_coarse_model_flops = coarse_model_flops( | |
TopicFormer, topicfm_conf["coarse"], (feat_c0, feat_c1) | |
) | |
print( | |
"FLOPs of coarse matching model in TopicFM: {} GFLOPs".format( | |
topicfm_coarse_model_flops | |
) | |
) | |