Spaces:
Running
Running
import pickle | |
import random | |
import numpy as np | |
import pycolmap | |
from matplotlib import cm | |
from .utils.io import read_image | |
from .utils.viz import add_text, cm_RdGn, plot_images, plot_keypoints, plot_matches | |
def visualize_sfm_2d( | |
reconstruction, image_dir, color_by="visibility", selected=[], n=1, seed=0, dpi=75 | |
): | |
assert image_dir.exists() | |
if not isinstance(reconstruction, pycolmap.Reconstruction): | |
reconstruction = pycolmap.Reconstruction(reconstruction) | |
if not selected: | |
image_ids = reconstruction.reg_image_ids() | |
selected = random.Random(seed).sample(image_ids, min(n, len(image_ids))) | |
for i in selected: | |
image = reconstruction.images[i] | |
keypoints = np.array([p.xy for p in image.points2D]) | |
visible = np.array([p.has_point3D() for p in image.points2D]) | |
if color_by == "visibility": | |
color = [(0, 0, 1) if v else (1, 0, 0) for v in visible] | |
text = f"visible: {np.count_nonzero(visible)}/{len(visible)}" | |
elif color_by == "track_length": | |
tl = np.array( | |
[ | |
reconstruction.points3D[p.point3D_id].track.length() | |
if p.has_point3D() | |
else 1 | |
for p in image.points2D | |
] | |
) | |
max_, med_ = np.max(tl), np.median(tl[tl > 1]) | |
tl = np.log(tl) | |
color = cm.jet(tl / tl.max()).tolist() | |
text = f"max/median track length: {max_}/{med_}" | |
elif color_by == "depth": | |
p3ids = [p.point3D_id for p in image.points2D if p.has_point3D()] | |
z = np.array( | |
[ | |
(image.cam_from_world * reconstruction.points3D[j].xyz)[-1] | |
for j in p3ids | |
] | |
) | |
z -= z.min() | |
color = cm.jet(z / np.percentile(z, 99.9)) | |
text = f"visible: {np.count_nonzero(visible)}/{len(visible)}" | |
keypoints = keypoints[visible] | |
else: | |
raise NotImplementedError(f"Coloring not implemented: {color_by}.") | |
name = image.name | |
plot_images([read_image(image_dir / name)], dpi=dpi) | |
plot_keypoints([keypoints], colors=[color], ps=4) | |
add_text(0, text) | |
add_text(0, name, pos=(0.01, 0.01), fs=5, lcolor=None, va="bottom") | |
def visualize_loc( | |
results, | |
image_dir, | |
reconstruction=None, | |
db_image_dir=None, | |
selected=[], | |
n=1, | |
seed=0, | |
prefix=None, | |
**kwargs, | |
): | |
assert image_dir.exists() | |
with open(str(results) + "_logs.pkl", "rb") as f: | |
logs = pickle.load(f) | |
if not selected: | |
queries = list(logs["loc"].keys()) | |
if prefix: | |
queries = [q for q in queries if q.startswith(prefix)] | |
selected = random.Random(seed).sample(queries, min(n, len(queries))) | |
if reconstruction is not None: | |
if not isinstance(reconstruction, pycolmap.Reconstruction): | |
reconstruction = pycolmap.Reconstruction(reconstruction) | |
for qname in selected: | |
loc = logs["loc"][qname] | |
visualize_loc_from_log( | |
image_dir, qname, loc, reconstruction, db_image_dir, **kwargs | |
) | |
def visualize_loc_from_log( | |
image_dir, | |
query_name, | |
loc, | |
reconstruction=None, | |
db_image_dir=None, | |
top_k_db=2, | |
dpi=75, | |
): | |
q_image = read_image(image_dir / query_name) | |
if loc.get("covisibility_clustering", False): | |
# select the first, largest cluster if the localization failed | |
loc = loc["log_clusters"][loc["best_cluster"] or 0] | |
inliers = np.array(loc["PnP_ret"]["inliers"]) | |
mkp_q = loc["keypoints_query"] | |
n = len(loc["db"]) | |
if reconstruction is not None: | |
# for each pair of query keypoint and its matched 3D point, | |
# we need to find its corresponding keypoint in each database image | |
# that observes it. We also count the number of inliers in each. | |
kp_idxs, kp_to_3D_to_db = loc["keypoint_index_to_db"] | |
counts = np.zeros(n) | |
dbs_kp_q_db = [[] for _ in range(n)] | |
inliers_dbs = [[] for _ in range(n)] | |
for i, (inl, (p3D_id, db_idxs)) in enumerate(zip(inliers, kp_to_3D_to_db)): | |
track = reconstruction.points3D[p3D_id].track | |
track = {el.image_id: el.point2D_idx for el in track.elements} | |
for db_idx in db_idxs: | |
counts[db_idx] += inl | |
kp_db = track[loc["db"][db_idx]] | |
dbs_kp_q_db[db_idx].append((i, kp_db)) | |
inliers_dbs[db_idx].append(inl) | |
else: | |
# for inloc the database keypoints are already in the logs | |
assert "keypoints_db" in loc | |
assert "indices_db" in loc | |
counts = np.array([np.sum(loc["indices_db"][inliers] == i) for i in range(n)]) | |
# display the database images with the most inlier matches | |
db_sort = np.argsort(-counts) | |
for db_idx in db_sort[:top_k_db]: | |
if reconstruction is not None: | |
db = reconstruction.images[loc["db"][db_idx]] | |
db_name = db.name | |
db_kp_q_db = np.array(dbs_kp_q_db[db_idx]) | |
kp_q = mkp_q[db_kp_q_db[:, 0]] | |
kp_db = np.array([db.points2D[i].xy for i in db_kp_q_db[:, 1]]) | |
inliers_db = inliers_dbs[db_idx] | |
else: | |
db_name = loc["db"][db_idx] | |
kp_q = mkp_q[loc["indices_db"] == db_idx] | |
kp_db = loc["keypoints_db"][loc["indices_db"] == db_idx] | |
inliers_db = inliers[loc["indices_db"] == db_idx] | |
db_image = read_image((db_image_dir or image_dir) / db_name) | |
color = cm_RdGn(inliers_db).tolist() | |
text = f"inliers: {sum(inliers_db)}/{len(inliers_db)}" | |
plot_images([q_image, db_image], dpi=dpi) | |
plot_matches(kp_q, kp_db, color, a=0.1) | |
add_text(0, text) | |
opts = dict(pos=(0.01, 0.01), fs=5, lcolor=None, va="bottom") | |
add_text(0, query_name, **opts) | |
add_text(1, db_name, **opts) | |