Spaces:
Running
Running
import numpy as np | |
import torch | |
import torchvision.transforms.functional as F | |
from types import SimpleNamespace | |
from .extract_features import read_image, resize_image | |
import cv2 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
confs = { | |
# Best quality but loads of points. Only use for small scenes | |
"loftr": { | |
"output": "matches-loftr", | |
"model": { | |
"name": "loftr", | |
"weights": "outdoor", | |
"max_keypoints": 2000, | |
"match_threshold": 0.2, | |
}, | |
"preprocessing": { | |
"grayscale": True, | |
"resize_max": 1024, | |
"dfactor": 8, | |
"width": 640, | |
"height": 480, | |
"force_resize": True, | |
}, | |
"max_error": 1, # max error for assigned keypoints (in px) | |
"cell_size": 1, # size of quantization patch (max 1 kp/patch) | |
}, | |
# Semi-scalable loftr which limits detected keypoints | |
"loftr_aachen": { | |
"output": "matches-loftr_aachen", | |
"model": { | |
"name": "loftr", | |
"weights": "outdoor", | |
"max_keypoints": 2000, | |
"match_threshold": 0.2, | |
}, | |
"preprocessing": {"grayscale": True, "resize_max": 1024, "dfactor": 8}, | |
"max_error": 2, # max error for assigned keypoints (in px) | |
"cell_size": 8, # size of quantization patch (max 1 kp/patch) | |
}, | |
# Use for matching superpoint feats with loftr | |
"loftr_superpoint": { | |
"output": "matches-loftr_aachen", | |
"model": { | |
"name": "loftr", | |
"weights": "outdoor", | |
"max_keypoints": 2000, | |
"match_threshold": 0.2, | |
}, | |
"preprocessing": {"grayscale": True, "resize_max": 1024, "dfactor": 8}, | |
"max_error": 4, # max error for assigned keypoints (in px) | |
"cell_size": 4, # size of quantization patch (max 1 kp/patch) | |
}, | |
# Use topicfm for matching feats | |
"topicfm": { | |
"output": "matches-topicfm", | |
"model": { | |
"name": "topicfm", | |
"weights": "outdoor", | |
"max_keypoints": 2000, | |
"match_threshold": 0.2, | |
}, | |
"preprocessing": { | |
"grayscale": True, | |
"force_resize": True, | |
"resize_max": 1024, | |
"dfactor": 8, | |
"width": 640, | |
"height": 480, | |
}, | |
}, | |
# Use aspanformer for matching feats | |
"aspanformer": { | |
"output": "matches-aspanformer", | |
"model": { | |
"name": "aspanformer", | |
"weights": "outdoor", | |
"max_keypoints": 2000, | |
"match_threshold": 0.2, | |
}, | |
"preprocessing": { | |
"grayscale": True, | |
"force_resize": True, | |
"resize_max": 1024, | |
"width": 640, | |
"height": 480, | |
"dfactor": 8, | |
}, | |
}, | |
"xfeat_dense": { | |
"output": "matches-xfeat_dense", | |
"model": { | |
"name": "xfeat_dense", | |
"max_keypoints": 8000, | |
}, | |
"preprocessing": { | |
"grayscale": False, | |
"force_resize": False, | |
"resize_max": 1024, | |
"width": 640, | |
"height": 480, | |
"dfactor": 8, | |
}, | |
}, | |
"dkm": { | |
"output": "matches-dkm", | |
"model": { | |
"name": "dkm", | |
"weights": "outdoor", | |
"max_keypoints": 2000, | |
"match_threshold": 0.2, | |
}, | |
"preprocessing": { | |
"grayscale": False, | |
"force_resize": True, | |
"resize_max": 1024, | |
"width": 80, | |
"height": 60, | |
"dfactor": 8, | |
}, | |
}, | |
"roma": { | |
"output": "matches-roma", | |
"model": { | |
"name": "roma", | |
"weights": "outdoor", | |
"max_keypoints": 2000, | |
"match_threshold": 0.2, | |
}, | |
"preprocessing": { | |
"grayscale": False, | |
"force_resize": True, | |
"resize_max": 1024, | |
"width": 320, | |
"height": 240, | |
"dfactor": 8, | |
}, | |
}, | |
"dedode_sparse": { | |
"output": "matches-dedode", | |
"model": { | |
"name": "dedode", | |
"max_keypoints": 2000, | |
"match_threshold": 0.2, | |
"dense": False, | |
}, | |
"preprocessing": { | |
"grayscale": False, | |
"force_resize": True, | |
"resize_max": 1024, | |
"width": 768, | |
"height": 768, | |
"dfactor": 8, | |
}, | |
}, | |
"sold2": { | |
"output": "matches-sold2", | |
"model": { | |
"name": "sold2", | |
"max_keypoints": 2000, | |
"match_threshold": 0.2, | |
}, | |
"preprocessing": { | |
"grayscale": True, | |
"force_resize": True, | |
"resize_max": 1024, | |
"width": 640, | |
"height": 480, | |
"dfactor": 8, | |
}, | |
}, | |
"gluestick": { | |
"output": "matches-gluestick", | |
"model": { | |
"name": "gluestick", | |
"use_lines": True, | |
"max_keypoints": 1000, | |
"max_lines": 300, | |
"force_num_keypoints": False, | |
}, | |
"preprocessing": { | |
"grayscale": True, | |
"force_resize": True, | |
"resize_max": 1024, | |
"width": 640, | |
"height": 480, | |
"dfactor": 8, | |
}, | |
}, | |
} | |
def scale_keypoints(kpts, scale): | |
if np.any(scale != 1.0): | |
kpts *= kpts.new_tensor(scale) | |
return kpts | |
def scale_lines(lines, scale): | |
if np.any(scale != 1.0): | |
lines *= lines.new_tensor(scale) | |
return lines | |
def match(model, path_0, path_1, conf): | |
default_conf = { | |
"grayscale": True, | |
"resize_max": 1024, | |
"dfactor": 8, | |
"cache_images": False, | |
"force_resize": False, | |
"width": 320, | |
"height": 240, | |
} | |
def preprocess(image: np.ndarray): | |
image = image.astype(np.float32, copy=False) | |
size = image.shape[:2][::-1] | |
scale = np.array([1.0, 1.0]) | |
if conf.resize_max: | |
scale = conf.resize_max / max(size) | |
if scale < 1.0: | |
size_new = tuple(int(round(x * scale)) for x in size) | |
image = resize_image(image, size_new, "cv2_area") | |
scale = np.array(size) / np.array(size_new) | |
if conf.force_resize: | |
size = image.shape[:2][::-1] | |
image = resize_image(image, (conf.width, conf.height), "cv2_area") | |
size_new = (conf.width, conf.height) | |
scale = np.array(size) / np.array(size_new) | |
if conf.grayscale: | |
assert image.ndim == 2, image.shape | |
image = image[None] | |
else: | |
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW | |
image = torch.from_numpy(image / 255.0).float() | |
# assure that the size is divisible by dfactor | |
size_new = tuple( | |
map( | |
lambda x: int(x // conf.dfactor * conf.dfactor), | |
image.shape[-2:], | |
) | |
) | |
image = F.resize(image, size=size_new, antialias=True) | |
scale = np.array(size) / np.array(size_new)[::-1] | |
return image, scale | |
conf = SimpleNamespace(**{**default_conf, **conf}) | |
image0 = read_image(path_0, conf.grayscale) | |
image1 = read_image(path_1, conf.grayscale) | |
image0, scale0 = preprocess(image0) | |
image1, scale1 = preprocess(image1) | |
image0 = image0.to(device)[None] | |
image1 = image1.to(device)[None] | |
pred = model({"image0": image0, "image1": image1}) | |
# Rescale keypoints and move to cpu | |
kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"] | |
kpts0 = scale_keypoints(kpts0 + 0.5, scale0) - 0.5 | |
kpts1 = scale_keypoints(kpts1 + 0.5, scale1) - 0.5 | |
ret = { | |
"image0": image0.squeeze().cpu().numpy(), | |
"image1": image1.squeeze().cpu().numpy(), | |
"keypoints0": kpts0.cpu().numpy(), | |
"keypoints1": kpts1.cpu().numpy(), | |
} | |
if "mconf" in pred.keys(): | |
ret["mconf"] = pred["mconf"].cpu().numpy() | |
return ret | |
def match_images(model, image_0, image_1, conf, device="cpu"): | |
default_conf = { | |
"grayscale": True, | |
"resize_max": 1024, | |
"dfactor": 8, | |
"cache_images": False, | |
"force_resize": False, | |
"width": 320, | |
"height": 240, | |
} | |
def preprocess(image: np.ndarray): | |
image = image.astype(np.float32, copy=False) | |
size = image.shape[:2][::-1] | |
scale = np.array([1.0, 1.0]) | |
if conf.resize_max: | |
scale = conf.resize_max / max(size) | |
if scale < 1.0: | |
size_new = tuple(int(round(x * scale)) for x in size) | |
image = resize_image(image, size_new, "cv2_area") | |
scale = np.array(size) / np.array(size_new) | |
if conf.force_resize: | |
size = image.shape[:2][::-1] | |
image = resize_image(image, (conf.width, conf.height), "cv2_area") | |
size_new = (conf.width, conf.height) | |
scale = np.array(size) / np.array(size_new) | |
if conf.grayscale: | |
assert image.ndim == 2, image.shape | |
image = image[None] | |
else: | |
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW | |
image = torch.from_numpy(image / 255.0).float() | |
# assure that the size is divisible by dfactor | |
size_new = tuple( | |
map( | |
lambda x: int(x // conf.dfactor * conf.dfactor), | |
image.shape[-2:], | |
) | |
) | |
image = F.resize(image, size=size_new) | |
scale = np.array(size) / np.array(size_new)[::-1] | |
return image, scale | |
conf = SimpleNamespace(**{**default_conf, **conf}) | |
if len(image_0.shape) == 3 and conf.grayscale: | |
image0 = cv2.cvtColor(image_0, cv2.COLOR_RGB2GRAY) | |
else: | |
image0 = image_0 | |
if len(image_0.shape) == 3 and conf.grayscale: | |
image1 = cv2.cvtColor(image_1, cv2.COLOR_RGB2GRAY) | |
else: | |
image1 = image_1 | |
# comment following lines, image is always RGB mode | |
# if not conf.grayscale and len(image0.shape) == 3: | |
# image0 = image0[:, :, ::-1] # BGR to RGB | |
# if not conf.grayscale and len(image1.shape) == 3: | |
# image1 = image1[:, :, ::-1] # BGR to RGB | |
image0, scale0 = preprocess(image0) | |
image1, scale1 = preprocess(image1) | |
image0 = image0.to(device)[None] | |
image1 = image1.to(device)[None] | |
pred = model({"image0": image0, "image1": image1}) | |
s0 = np.array(image_0.shape[:2][::-1]) / np.array(image0.shape[-2:][::-1]) | |
s1 = np.array(image_1.shape[:2][::-1]) / np.array(image1.shape[-2:][::-1]) | |
# Rescale keypoints and move to cpu | |
if "keypoints0" in pred.keys() and "keypoints1" in pred.keys(): | |
kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"] | |
kpts0_origin = scale_keypoints(kpts0 + 0.5, s0) - 0.5 | |
kpts1_origin = scale_keypoints(kpts1 + 0.5, s1) - 0.5 | |
ret = { | |
"image0": image0.squeeze().cpu().numpy(), | |
"image1": image1.squeeze().cpu().numpy(), | |
"image0_orig": image_0, | |
"image1_orig": image_1, | |
"keypoints0": kpts0_origin.cpu().numpy(), | |
"keypoints1": kpts1_origin.cpu().numpy(), | |
"keypoints0_orig": kpts0_origin.cpu().numpy(), | |
"keypoints1_orig": kpts1_origin.cpu().numpy(), | |
"original_size0": np.array(image_0.shape[:2][::-1]), | |
"original_size1": np.array(image_1.shape[:2][::-1]), | |
"new_size0": np.array(image0.shape[-2:][::-1]), | |
"new_size1": np.array(image1.shape[-2:][::-1]), | |
"scale0": s0, | |
"scale1": s1, | |
} | |
if "mconf" in pred.keys(): | |
ret["mconf"] = pred["mconf"].cpu().numpy() | |
elif "scores" in pred.keys(): #adapting loftr | |
ret["mconf"] = pred["scores"].cpu().numpy() | |
else: | |
ret["mconf"] = np.ones_like(kpts0.cpu().numpy()[:, 0]) | |
if "lines0" in pred.keys() and "lines1" in pred.keys(): | |
if "keypoints0" in pred.keys() and "keypoints1" in pred.keys(): | |
kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"] | |
kpts0_origin = scale_keypoints(kpts0 + 0.5, s0) - 0.5 | |
kpts1_origin = scale_keypoints(kpts1 + 0.5, s1) - 0.5 | |
kpts0_origin = kpts0_origin.cpu().numpy() | |
kpts1_origin = kpts1_origin.cpu().numpy() | |
else: | |
kpts0_origin, kpts1_origin = ( | |
None, | |
None, | |
) # np.zeros([0]), np.zeros([0]) | |
lines0, lines1 = pred["lines0"], pred["lines1"] | |
lines0_raw, lines1_raw = pred["raw_lines0"], pred["raw_lines1"] | |
lines0_raw = torch.from_numpy(lines0_raw.copy()) | |
lines1_raw = torch.from_numpy(lines1_raw.copy()) | |
lines0_raw = scale_lines(lines0_raw + 0.5, s0) - 0.5 | |
lines1_raw = scale_lines(lines1_raw + 0.5, s1) - 0.5 | |
lines0 = torch.from_numpy(lines0.copy()) | |
lines1 = torch.from_numpy(lines1.copy()) | |
lines0 = scale_lines(lines0 + 0.5, s0) - 0.5 | |
lines1 = scale_lines(lines1 + 0.5, s1) - 0.5 | |
ret = { | |
"image0_orig": image_0, | |
"image1_orig": image_1, | |
"line0": lines0_raw.cpu().numpy(), | |
"line1": lines1_raw.cpu().numpy(), | |
"line0_orig": lines0.cpu().numpy(), | |
"line1_orig": lines1.cpu().numpy(), | |
"line_keypoints0_orig": kpts0_origin, | |
"line_keypoints1_orig": kpts1_origin, | |
} | |
del pred | |
torch.cuda.empty_cache() | |
return ret | |