Vincentqyw
fix: roma
4c12b36
raw
history blame
2.14 kB
import torch
from tqdm import tqdm
from DeDoDe.utils import to_cuda
def train_step(train_batch, model, objective, optimizer, grad_scaler=None, **kwargs):
optimizer.zero_grad()
out = model(train_batch)
l = objective(out, train_batch)
if grad_scaler is not None:
grad_scaler.scale(l).backward()
grad_scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.01)
grad_scaler.step(optimizer)
grad_scaler.update()
else:
l.backward()
optimizer.step()
return {"train_out": out, "train_loss": l.item()}
def train_k_steps(
n_0,
k,
dataloader,
model,
objective,
optimizer,
lr_scheduler,
grad_scaler=None,
progress_bar=True,
):
for n in tqdm(range(n_0, n_0 + k), disable=not progress_bar, mininterval=10.0):
batch = next(dataloader)
model.train(True)
batch = to_cuda(batch)
train_step(
train_batch=batch,
model=model,
objective=objective,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
n=n,
grad_scaler=grad_scaler,
)
lr_scheduler.step()
def train_epoch(
dataloader=None,
model=None,
objective=None,
optimizer=None,
lr_scheduler=None,
epoch=None,
):
model.train(True)
print(f"At epoch {epoch}")
for batch in tqdm(dataloader, mininterval=5.0):
batch = to_cuda(batch)
train_step(
train_batch=batch, model=model, objective=objective, optimizer=optimizer
)
lr_scheduler.step()
return {
"model": model,
"optimizer": optimizer,
"lr_scheduler": lr_scheduler,
"epoch": epoch,
}
def train_k_epochs(
start_epoch, end_epoch, dataloader, model, objective, optimizer, lr_scheduler
):
for epoch in range(start_epoch, end_epoch + 1):
train_epoch(
dataloader=dataloader,
model=model,
objective=objective,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
epoch=epoch,
)