Vincentqyw
add app queue
b31006a
raw
history blame
13.4 kB
import torch
import torch.nn as nn
eps = 1e-8
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def sinkhorn(M, r, c, iteration):
p = torch.softmax(M, dim=-1)
u = torch.ones_like(r)
v = torch.ones_like(c)
for _ in range(iteration):
u = r / ((p * v.unsqueeze(-2)).sum(-1) + eps)
v = c / ((p * u.unsqueeze(-1)).sum(-2) + eps)
p = p * u.unsqueeze(-1) * v.unsqueeze(-2)
return p
def sink_algorithm(M, dustbin, iteration):
M = torch.cat([M, dustbin.expand([M.shape[0], M.shape[1], 1])], dim=-1)
M = torch.cat([M, dustbin.expand([M.shape[0], 1, M.shape[2]])], dim=-2)
r = torch.ones([M.shape[0], M.shape[1] - 1], device=device)
r = torch.cat([r, torch.ones([M.shape[0], 1], device=device) * M.shape[1]], dim=-1)
c = torch.ones([M.shape[0], M.shape[2] - 1], device=device)
c = torch.cat([c, torch.ones([M.shape[0], 1], device=device) * M.shape[2]], dim=-1)
p = sinkhorn(M, r, c, iteration)
return p
def seeding(
nn_index1,
nn_index2,
x1,
x2,
topk,
match_score,
confbar,
nms_radius,
use_mc=True,
test=False,
):
# apply mutual check before nms
if use_mc:
mask_not_mutual = nn_index2.gather(dim=-1, index=nn_index1) != torch.arange(
nn_index1.shape[1], device=device
)
match_score[mask_not_mutual] = -1
# NMS
pos_dismat1 = (
(
(x1.norm(p=2, dim=-1) ** 2).unsqueeze_(-1)
+ (x1.norm(p=2, dim=-1) ** 2).unsqueeze_(-2)
- 2 * (x1 @ x1.transpose(1, 2))
)
.abs_()
.sqrt_()
)
x2 = x2.gather(index=nn_index1.unsqueeze(-1).expand(-1, -1, 2), dim=1)
pos_dismat2 = (
(
(x2.norm(p=2, dim=-1) ** 2).unsqueeze_(-1)
+ (x2.norm(p=2, dim=-1) ** 2).unsqueeze_(-2)
- 2 * (x2 @ x2.transpose(1, 2))
)
.abs_()
.sqrt_()
)
radius1, radius2 = nms_radius * pos_dismat1.mean(
dim=(1, 2), keepdim=True
), nms_radius * pos_dismat2.mean(dim=(1, 2), keepdim=True)
nms_mask = (pos_dismat1 >= radius1) & (pos_dismat2 >= radius2)
mask_not_local_max = (
match_score.unsqueeze(-1) >= match_score.unsqueeze(-2)
) | nms_mask
mask_not_local_max = ~(mask_not_local_max.min(dim=-1).values)
match_score[mask_not_local_max] = -1
# confidence bar
match_score[match_score < confbar] = -1
mask_survive = match_score > 0
if test:
topk = min(mask_survive.sum(dim=1)[0] + 2, topk)
_, topindex = torch.topk(match_score, topk, dim=-1) # b*k
seed_index1, seed_index2 = topindex, nn_index1.gather(index=topindex, dim=-1)
return seed_index1, seed_index2
class PointCN(nn.Module):
def __init__(self, channels, out_channels):
nn.Module.__init__(self)
self.shot_cut = nn.Conv1d(channels, out_channels, kernel_size=1)
self.conv = nn.Sequential(
nn.InstanceNorm1d(channels, eps=1e-3),
nn.SyncBatchNorm(channels),
nn.ReLU(),
nn.Conv1d(channels, channels, kernel_size=1),
nn.InstanceNorm1d(channels, eps=1e-3),
nn.SyncBatchNorm(channels),
nn.ReLU(),
nn.Conv1d(channels, out_channels, kernel_size=1),
)
def forward(self, x):
return self.conv(x) + self.shot_cut(x)
class attention_propagantion(nn.Module):
def __init__(self, channel, head):
nn.Module.__init__(self)
self.head = head
self.head_dim = channel // head
self.query_filter, self.key_filter, self.value_filter = (
nn.Conv1d(channel, channel, kernel_size=1),
nn.Conv1d(channel, channel, kernel_size=1),
nn.Conv1d(channel, channel, kernel_size=1),
)
self.mh_filter = nn.Conv1d(channel, channel, kernel_size=1)
self.cat_filter = nn.Sequential(
nn.Conv1d(2 * channel, 2 * channel, kernel_size=1),
nn.SyncBatchNorm(2 * channel),
nn.ReLU(),
nn.Conv1d(2 * channel, channel, kernel_size=1),
)
def forward(self, desc1, desc2, weight_v=None):
# desc1(q) attend to desc2(k,v)
batch_size = desc1.shape[0]
query, key, value = (
self.query_filter(desc1).view(batch_size, self.head, self.head_dim, -1),
self.key_filter(desc2).view(batch_size, self.head, self.head_dim, -1),
self.value_filter(desc2).view(batch_size, self.head, self.head_dim, -1),
)
if weight_v is not None:
value = value * weight_v.view(batch_size, 1, 1, -1)
score = torch.softmax(
torch.einsum("bhdn,bhdm->bhnm", query, key) / self.head_dim**0.5, dim=-1
)
add_value = torch.einsum("bhnm,bhdm->bhdn", score, value).reshape(
batch_size, self.head_dim * self.head, -1
)
add_value = self.mh_filter(add_value)
desc1_new = desc1 + self.cat_filter(torch.cat([desc1, add_value], dim=1))
return desc1_new
class hybrid_block(nn.Module):
def __init__(self, channel, head):
nn.Module.__init__(self)
self.head = head
self.channel = channel
self.attention_block_down = attention_propagantion(channel, head)
self.cluster_filter = nn.Sequential(
nn.Conv1d(2 * channel, 2 * channel, kernel_size=1),
nn.SyncBatchNorm(2 * channel),
nn.ReLU(),
nn.Conv1d(2 * channel, 2 * channel, kernel_size=1),
)
self.cross_filter = attention_propagantion(channel, head)
self.confidence_filter = PointCN(2 * channel, 1)
self.attention_block_self = attention_propagantion(channel, head)
self.attention_block_up = attention_propagantion(channel, head)
def forward(self, desc1, desc2, seed_index1, seed_index2):
cluster1, cluster2 = desc1.gather(
dim=-1, index=seed_index1.unsqueeze(1).expand(-1, self.channel, -1)
), desc2.gather(
dim=-1, index=seed_index2.unsqueeze(1).expand(-1, self.channel, -1)
)
# pooling
cluster1, cluster2 = self.attention_block_down(
cluster1, desc1
), self.attention_block_down(cluster2, desc2)
concate_cluster = self.cluster_filter(torch.cat([cluster1, cluster2], dim=1))
# filtering
cluster1, cluster2 = self.cross_filter(
concate_cluster[:, : self.channel], concate_cluster[:, self.channel :]
), self.cross_filter(
concate_cluster[:, self.channel :], concate_cluster[:, : self.channel]
)
cluster1, cluster2 = self.attention_block_self(
cluster1, cluster1
), self.attention_block_self(cluster2, cluster2)
# unpooling
seed_weight = self.confidence_filter(torch.cat([cluster1, cluster2], dim=1))
seed_weight = torch.sigmoid(seed_weight).squeeze(1)
desc1_new, desc2_new = self.attention_block_up(
desc1, cluster1, seed_weight
), self.attention_block_up(desc2, cluster2, seed_weight)
return desc1_new, desc2_new, seed_weight
class matcher(nn.Module):
def __init__(self, config):
nn.Module.__init__(self)
self.seed_top_k = config.seed_top_k
self.conf_bar = config.conf_bar
self.seed_radius_coe = config.seed_radius_coe
self.use_score_encoding = config.use_score_encoding
self.detach_iter = config.detach_iter
self.seedlayer = config.seedlayer
self.layer_num = config.layer_num
self.sink_iter = config.sink_iter
self.position_encoder = nn.Sequential(
nn.Conv1d(3, 32, kernel_size=1)
if config.use_score_encoding
else nn.Conv1d(2, 32, kernel_size=1),
nn.SyncBatchNorm(32),
nn.ReLU(),
nn.Conv1d(32, 64, kernel_size=1),
nn.SyncBatchNorm(64),
nn.ReLU(),
nn.Conv1d(64, 128, kernel_size=1),
nn.SyncBatchNorm(128),
nn.ReLU(),
nn.Conv1d(128, 256, kernel_size=1),
nn.SyncBatchNorm(256),
nn.ReLU(),
nn.Conv1d(256, config.net_channels, kernel_size=1),
)
self.hybrid_block = nn.Sequential(
*[
hybrid_block(config.net_channels, config.head)
for _ in range(config.layer_num)
]
)
self.final_project = nn.Conv1d(
config.net_channels, config.net_channels, kernel_size=1
)
self.dustbin = nn.Parameter(torch.tensor(1.5, dtype=torch.float32))
# if reseeding
if len(config.seedlayer) != 1:
self.mid_dustbin = nn.ParameterDict(
{
str(i): nn.Parameter(torch.tensor(2, dtype=torch.float32))
for i in config.seedlayer[1:]
}
)
self.mid_final_project = nn.Conv1d(
config.net_channels, config.net_channels, kernel_size=1
)
def forward(self, data, test_mode=True):
x1, x2, desc1, desc2 = (
data["x1"][:, :, :2],
data["x2"][:, :, :2],
data["desc1"],
data["desc2"],
)
desc1, desc2 = torch.nn.functional.normalize(
desc1, dim=-1
), torch.nn.functional.normalize(desc2, dim=-1)
if test_mode:
encode_x1, encode_x2 = data["x1"], data["x2"]
else:
encode_x1, encode_x2 = data["aug_x1"], data["aug_x2"]
# preparation
desc_dismat = (2 - 2 * torch.matmul(desc1, desc2.transpose(1, 2))).sqrt_()
values, nn_index = torch.topk(
desc_dismat, k=2, largest=False, dim=-1, sorted=True
)
nn_index2 = torch.min(desc_dismat, dim=1).indices.squeeze(1)
inverse_ratio_score, nn_index1 = (
values[:, :, 1] / values[:, :, 0],
nn_index[:, :, 0],
) # get inverse score
# initial seeding
seed_index1, seed_index2 = seeding(
nn_index1,
nn_index2,
x1,
x2,
self.seed_top_k[0],
inverse_ratio_score,
self.conf_bar[0],
self.seed_radius_coe,
test=test_mode,
)
# position encoding
desc1, desc2 = desc1.transpose(1, 2), desc2.transpose(1, 2)
if not self.use_score_encoding:
encode_x1, encode_x2 = encode_x1[:, :, :2], encode_x2[:, :, :2]
encode_x1, encode_x2 = encode_x1.transpose(1, 2), encode_x2.transpose(1, 2)
x1_pos_embedding, x2_pos_embedding = self.position_encoder(
encode_x1
), self.position_encoder(encode_x2)
aug_desc1, aug_desc2 = x1_pos_embedding + desc1, x2_pos_embedding + desc2
seed_weight_tower, mid_p_tower, seed_index_tower, nn_index_tower = (
[],
[],
[],
[],
)
seed_index_tower.append(torch.stack([seed_index1, seed_index2], dim=-1))
nn_index_tower.append(nn_index1)
seed_para_index = 0
for i in range(self.layer_num):
# mid seeding
if i in self.seedlayer and i != 0:
seed_para_index += 1
aug_desc1, aug_desc2 = self.mid_final_project(
aug_desc1
), self.mid_final_project(aug_desc2)
M = torch.matmul(aug_desc1.transpose(1, 2), aug_desc2)
p = sink_algorithm(
M, self.mid_dustbin[str(i)], self.sink_iter[seed_para_index - 1]
)
mid_p_tower.append(p)
# rematching with p
values, nn_index = torch.topk(p[:, :-1, :-1], k=1, dim=-1)
nn_index2 = torch.max(p[:, :-1, :-1], dim=1).indices.squeeze(1)
p_match_score, nn_index1 = values[:, :, 0], nn_index[:, :, 0]
# reseeding
seed_index1, seed_index2 = seeding(
nn_index1,
nn_index2,
x1,
x2,
self.seed_top_k[seed_para_index],
p_match_score,
self.conf_bar[seed_para_index],
self.seed_radius_coe,
test=test_mode,
)
seed_index_tower.append(
torch.stack([seed_index1, seed_index2], dim=-1)
), nn_index_tower.append(nn_index1)
if not test_mode and data["step"] < self.detach_iter:
aug_desc1, aug_desc2 = aug_desc1.detach(), aug_desc2.detach()
aug_desc1, aug_desc2, seed_weight = self.hybrid_block[i](
aug_desc1, aug_desc2, seed_index1, seed_index2
)
seed_weight_tower.append(seed_weight)
aug_desc1, aug_desc2 = self.final_project(aug_desc1), self.final_project(
aug_desc2
)
cmat = torch.matmul(aug_desc1.transpose(1, 2), aug_desc2)
p = sink_algorithm(cmat, self.dustbin, self.sink_iter[-1])
# seed_weight_tower: l*b*k
# seed_index_tower: l*b*k*2
# nn_index_tower: seed_l*b
return {
"p": p,
"seed_conf": seed_weight_tower,
"seed_index": seed_index_tower,
"mid_p": mid_p_tower,
"nn_index": nn_index_tower,
}