Spaces:
Running
Running
import sys | |
from pathlib import Path | |
import torchvision.transforms as tvf | |
from .. import logger | |
from ..utils.base_model import BaseModel | |
tp_path = Path(__file__).parent / "../../third_party" | |
sys.path.append(str(tp_path)) | |
from pram.nets.sfd2 import load_sfd2 | |
class SFD2(BaseModel): | |
default_conf = { | |
"max_keypoints": 4096, | |
"model_name": "sfd2_20230511_210205_resnet4x.79.pth", | |
"conf_th": 0.001, | |
} | |
required_inputs = ["image"] | |
def _init(self, conf): | |
self.conf = {**self.default_conf, **conf} | |
self.norm_rgb = tvf.Normalize( | |
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] | |
) | |
model_path = tp_path / "pram" / "weights" / self.conf["model_name"] | |
self.net = load_sfd2(weight_path=model_path).eval() | |
logger.info("Load SFD2 model done.") | |
def _forward(self, data): | |
pred = self.net.extract_local_global( | |
data={"image": self.norm_rgb(data["image"])}, config=self.conf | |
) | |
out = { | |
"keypoints": pred["keypoints"][0][None], | |
"scores": pred["scores"][0][None], | |
"descriptors": pred["descriptors"][0][None], | |
} | |
return out | |