Spaces:
Running
Running
# -*- coding: UTF-8 -*- | |
'''================================================= | |
@Project -> File pram -> twelve_scenes | |
@IDE PyCharm | |
@Author fx221@cam.ac.uk | |
@Date 29/01/2024 14:37 | |
==================================================''' | |
import os | |
import os.path as osp | |
import numpy as np | |
from colmap_utils.read_write_model import read_model | |
import torchvision.transforms as tvt | |
from dataset.basicdataset import BasicDataset | |
class TwelveScenes(BasicDataset): | |
def __init__(self, landmark_path, scene, dataset_path, n_class, seg_mode, seg_method, dataset='12Scenes', | |
nfeatures=1024, | |
query_p3d_fn=None, | |
train=True, | |
with_aug=False, | |
min_inliers=0, | |
max_inliers=4096, | |
random_inliers=False, | |
jitter_params=None, | |
scale_params=None, | |
image_dim=3, | |
query_info_path=None, | |
sample_ratio=1, | |
): | |
self.landmark_path = osp.join(landmark_path, scene) | |
self.dataset_path = osp.join(dataset_path, scene) | |
self.n_class = n_class | |
self.dataset = dataset + '/' + scene | |
self.nfeatures = nfeatures | |
self.with_aug = with_aug | |
self.jitter_params = jitter_params | |
self.scale_params = scale_params | |
self.image_dim = image_dim | |
self.train = train | |
self.min_inliers = min_inliers | |
self.max_inliers = max_inliers if max_inliers < nfeatures else nfeatures | |
self.random_inliers = random_inliers | |
self.image_prefix = '' | |
train_transforms = [] | |
if self.with_aug: | |
train_transforms.append(tvt.ColorJitter( | |
brightness=jitter_params['brightness'], | |
contrast=jitter_params['contrast'], | |
saturation=jitter_params['saturation'], | |
hue=jitter_params['hue'])) | |
if jitter_params['blur'] > 0: | |
train_transforms.append(tvt.GaussianBlur(kernel_size=int(jitter_params['blur']))) | |
self.train_transforms = tvt.Compose(train_transforms) | |
if train: | |
self.cameras, self.images, point3Ds = read_model(path=osp.join(self.landmark_path, '3D-models'), ext='.bin') | |
self.name_to_id = {image.name: i for i, image in self.images.items() if len(self.images[i].point3D_ids) > 0} | |
# only for testing of query images | |
if not self.train: | |
data = np.load(query_p3d_fn, allow_pickle=True)[()] | |
self.img_p3d = data | |
else: | |
self.img_p3d = {} | |
with open(osp.join(self.dataset_path, 'split.txt'), 'r') as f: | |
l = f.readline() | |
l = l.strip().split(' ') # sequence0 [frames=357] [start=0 ; end=356], first sequence for testing | |
start_img_id = l[-3].split('=')[-1] | |
end_img_id = l[-1].split('=')[-1][:-1] | |
test_start_img_id = int(start_img_id) | |
test_end_img_id = int(end_img_id) | |
self.img_fns = [] | |
fns = os.listdir(osp.join(self.dataset_path, 'data')) | |
fns = sorted(fns) | |
nf = 0 | |
for fn in fns: | |
if fn.find('jpg') >= 0: # frame-001098.color.jpg | |
frame_id = int(fn.split('.')[0].split('-')[-1]) | |
if not train and frame_id > test_end_img_id: | |
continue | |
if train and frame_id <= test_end_img_id: | |
continue | |
if train and 'data' + '/' + fn not in self.name_to_id.keys(): | |
continue | |
if not train and 'data' + '/' + fn not in self.img_p3d.keys(): | |
continue | |
if nf % sample_ratio == 0: | |
self.img_fns.append('data' + '/' + fn) | |
nf += 1 | |
print('Load {} images from {} for {}...'.format(len(self.img_fns), | |
self.dataset, 'training' if train else 'eval')) | |
data = np.load(osp.join(self.landmark_path, | |
'point3D_cluster_n{:d}_{:s}_{:s}.npy'.format(n_class - 1, seg_mode, seg_method)), | |
allow_pickle=True)[()] | |
p3d_id = data['id'] | |
seg_id = data['label'] | |
self.p3d_seg = {p3d_id[i]: seg_id[i] for i in range(p3d_id.shape[0])} | |
xyzs = data['xyz'] | |
self.p3d_xyzs = {p3d_id[i]: xyzs[i] for i in range(p3d_id.shape[0])} | |
# with open(osp.join(self.landmark_path, 'sc_mean_scale.txt'), 'r') as f: | |
# lines = f.readlines() | |
# for l in lines: | |
# l = l.strip().split() | |
# self.mean_xyz = np.array([float(v) for v in l[:3]]) | |
# self.scale_xyz = np.array([float(v) for v in l[3:]]) | |
if not train: | |
self.query_info = self.read_query_info(path=query_info_path) | |
self.nfeatures = nfeatures | |
self.feature_dir = osp.join(self.landmark_path, 'feats') | |
self.feats = {} | |