Vincentqyw
fix: roma
4c12b36
raw
history blame
50.6 kB
"""
Code adapted from https://github.com/rpautrat/SuperPoint
Module used to generate geometrical synthetic shapes
"""
import math
import cv2 as cv
import numpy as np
import shapely.geometry
from itertools import combinations
random_state = np.random.RandomState(None)
def set_random_state(state):
global random_state
random_state = state
def get_random_color(background_color):
"""Output a random scalar in grayscale with a least a small contrast
with the background color."""
color = random_state.randint(256)
if abs(color - background_color) < 30: # not enough contrast
color = (color + 128) % 256
return color
def get_different_color(previous_colors, min_dist=50, max_count=20):
"""Output a color that contrasts with the previous colors.
Parameters:
previous_colors: np.array of the previous colors
min_dist: the difference between the new color and
the previous colors must be at least min_dist
max_count: maximal number of iterations
"""
color = random_state.randint(256)
count = 0
while np.any(np.abs(previous_colors - color) < min_dist) and count < max_count:
count += 1
color = random_state.randint(256)
return color
def add_salt_and_pepper(img):
"""Add salt and pepper noise to an image."""
noise = np.zeros((img.shape[0], img.shape[1]), dtype=np.uint8)
cv.randu(noise, 0, 255)
black = noise < 30
white = noise > 225
img[white > 0] = 255
img[black > 0] = 0
cv.blur(img, (5, 5), img)
return np.empty((0, 2), dtype=np.int)
def generate_background(
size=(960, 1280),
nb_blobs=100,
min_rad_ratio=0.01,
max_rad_ratio=0.05,
min_kernel_size=50,
max_kernel_size=300,
):
"""Generate a customized background image.
Parameters:
size: size of the image
nb_blobs: number of circles to draw
min_rad_ratio: the radius of blobs is at least min_rad_size * max(size)
max_rad_ratio: the radius of blobs is at most max_rad_size * max(size)
min_kernel_size: minimal size of the kernel
max_kernel_size: maximal size of the kernel
"""
img = np.zeros(size, dtype=np.uint8)
dim = max(size)
cv.randu(img, 0, 255)
cv.threshold(img, random_state.randint(256), 255, cv.THRESH_BINARY, img)
background_color = int(np.mean(img))
blobs = np.concatenate(
[
random_state.randint(0, size[1], size=(nb_blobs, 1)),
random_state.randint(0, size[0], size=(nb_blobs, 1)),
],
axis=1,
)
for i in range(nb_blobs):
col = get_random_color(background_color)
cv.circle(
img,
(blobs[i][0], blobs[i][1]),
np.random.randint(int(dim * min_rad_ratio), int(dim * max_rad_ratio)),
col,
-1,
)
kernel_size = random_state.randint(min_kernel_size, max_kernel_size)
cv.blur(img, (kernel_size, kernel_size), img)
return img
def generate_custom_background(
size, background_color, nb_blobs=3000, kernel_boundaries=(50, 100)
):
"""Generate a customized background to fill the shapes.
Parameters:
background_color: average color of the background image
nb_blobs: number of circles to draw
kernel_boundaries: interval of the possible sizes of the kernel
"""
img = np.zeros(size, dtype=np.uint8)
img = img + get_random_color(background_color)
blobs = np.concatenate(
[
np.random.randint(0, size[1], size=(nb_blobs, 1)),
np.random.randint(0, size[0], size=(nb_blobs, 1)),
],
axis=1,
)
for i in range(nb_blobs):
col = get_random_color(background_color)
cv.circle(img, (blobs[i][0], blobs[i][1]), np.random.randint(20), col, -1)
kernel_size = np.random.randint(kernel_boundaries[0], kernel_boundaries[1])
cv.blur(img, (kernel_size, kernel_size), img)
return img
def final_blur(img, kernel_size=(5, 5)):
"""Gaussian blur applied to an image.
Parameters:
kernel_size: size of the kernel
"""
cv.GaussianBlur(img, kernel_size, 0, img)
def ccw(A, B, C, dim):
"""Check if the points are listed in counter-clockwise order."""
if dim == 2: # only 2 dimensions
return (C[:, 1] - A[:, 1]) * (B[:, 0] - A[:, 0]) > (B[:, 1] - A[:, 1]) * (
C[:, 0] - A[:, 0]
)
else: # dim should be equal to 3
return (C[:, 1, :] - A[:, 1, :]) * (B[:, 0, :] - A[:, 0, :]) > (
B[:, 1, :] - A[:, 1, :]
) * (C[:, 0, :] - A[:, 0, :])
def intersect(A, B, C, D, dim):
"""Return true if line segments AB and CD intersect"""
return np.any(
(ccw(A, C, D, dim) != ccw(B, C, D, dim))
& (ccw(A, B, C, dim) != ccw(A, B, D, dim))
)
def keep_points_inside(points, size):
"""Keep only the points whose coordinates are inside the dimensions of
the image of size 'size'"""
mask = (
(points[:, 0] >= 0)
& (points[:, 0] < size[1])
& (points[:, 1] >= 0)
& (points[:, 1] < size[0])
)
return points[mask, :]
def get_unique_junctions(segments, min_label_len):
"""Get unique junction points from line segments."""
# Get all junctions from segments
junctions_all = np.concatenate((segments[:, :2], segments[:, 2:]), axis=0)
if junctions_all.shape[0] == 0:
junc_points = None
line_map = None
# Get all unique junction points
else:
junc_points = np.unique(junctions_all, axis=0)
# Generate line map from points and segments
line_map = get_line_map(junc_points, segments)
return junc_points, line_map
def get_line_map(points: np.ndarray, segments: np.ndarray) -> np.ndarray:
"""Get line map given the points and segment sets."""
# create empty line map
num_point = points.shape[0]
line_map = np.zeros([num_point, num_point])
# Iterate through every segment
for idx in range(segments.shape[0]):
# Get the junctions from a single segement
seg = segments[idx, :]
junction1 = seg[:2]
junction2 = seg[2:]
# Get index
idx_junction1 = np.where((points == junction1).sum(axis=1) == 2)[0]
idx_junction2 = np.where((points == junction2).sum(axis=1) == 2)[0]
# label the corresponding entries
line_map[idx_junction1, idx_junction2] = 1
line_map[idx_junction2, idx_junction1] = 1
return line_map
def get_line_heatmap(junctions, line_map, size=[480, 640], thickness=1):
"""Get line heat map from junctions and line map."""
# Make sure that the thickness is 1
if not isinstance(thickness, int):
thickness = int(thickness)
# If the junction points are not int => round them and convert to int
if not junctions.dtype == np.int:
junctions = (np.round(junctions)).astype(np.int)
# Initialize empty map
heat_map = np.zeros(size)
if junctions.shape[0] > 0: # If empty, just return zero map
# Iterate through all the junctions
for idx in range(junctions.shape[0]):
# if no connectivity, just skip it
if line_map[idx, :].sum() == 0:
continue
# Plot the line segment
else:
# Iterate through all the connected junctions
for idx2 in np.where(line_map[idx, :] == 1)[0]:
point1 = junctions[idx, :]
point2 = junctions[idx2, :]
# Draw line
cv.line(heat_map, tuple(point1), tuple(point2), 1.0, thickness)
return heat_map
def draw_lines(img, nb_lines=10, min_len=32, min_label_len=32):
"""Draw random lines and output the positions of the pair of junctions
and line associativities.
Parameters:
nb_lines: maximal number of lines
"""
# Set line number and points placeholder
num_lines = random_state.randint(1, nb_lines)
segments = np.empty((0, 4), dtype=np.int)
points = np.empty((0, 2), dtype=np.int)
background_color = int(np.mean(img))
min_dim = min(img.shape)
# Convert length constrain to pixel if given float number
if isinstance(min_len, float) and min_len <= 1.0:
min_len = int(min_dim * min_len)
if isinstance(min_label_len, float) and min_label_len <= 1.0:
min_label_len = int(min_dim * min_label_len)
# Generate lines one by one
for i in range(num_lines):
x1 = random_state.randint(img.shape[1])
y1 = random_state.randint(img.shape[0])
p1 = np.array([[x1, y1]])
x2 = random_state.randint(img.shape[1])
y2 = random_state.randint(img.shape[0])
p2 = np.array([[x2, y2]])
# Check the length of the line
line_length = np.sqrt(np.sum((p1 - p2) ** 2))
if line_length < min_len:
continue
# Check that there is no overlap
if intersect(segments[:, 0:2], segments[:, 2:4], p1, p2, 2):
continue
col = get_random_color(background_color)
thickness = random_state.randint(min_dim * 0.01, min_dim * 0.02)
cv.line(img, (x1, y1), (x2, y2), col, thickness)
# Only record the segments longer than min_label_len
seg_len = math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
if seg_len >= min_label_len:
segments = np.concatenate([segments, np.array([[x1, y1, x2, y2]])], axis=0)
points = np.concatenate([points, np.array([[x1, y1], [x2, y2]])], axis=0)
# If no line is drawn, recursively call the function
if points.shape[0] == 0:
return draw_lines(img, nb_lines, min_len, min_label_len)
# Get the line associativity map
line_map = get_line_map(points, segments)
return {"points": points, "line_map": line_map}
def check_segment_len(segments, min_len=32):
"""Check if one of the segments is too short (True means too short)."""
point1_vec = segments[:, :2]
point2_vec = segments[:, 2:]
diff = point1_vec - point2_vec
dist = np.sqrt(np.sum(diff**2, axis=1))
if np.any(dist < min_len):
return True
else:
return False
def draw_polygon(img, max_sides=8, min_len=32, min_label_len=64):
"""Draw a polygon with a random number of corners and return the position
of the junctions + line map.
Parameters:
max_sides: maximal number of sides + 1
"""
num_corners = random_state.randint(3, max_sides)
min_dim = min(img.shape[0], img.shape[1])
rad = max(random_state.rand() * min_dim / 2, min_dim / 10)
# Center of a circle
x = random_state.randint(rad, img.shape[1] - rad)
y = random_state.randint(rad, img.shape[0] - rad)
# Convert length constrain to pixel if given float number
if isinstance(min_len, float) and min_len <= 1.0:
min_len = int(min_dim * min_len)
if isinstance(min_label_len, float) and min_label_len <= 1.0:
min_label_len = int(min_dim * min_label_len)
# Sample num_corners points inside the circle
slices = np.linspace(0, 2 * math.pi, num_corners + 1)
angles = [
slices[i] + random_state.rand() * (slices[i + 1] - slices[i])
for i in range(num_corners)
]
points = np.array(
[
[
int(x + max(random_state.rand(), 0.4) * rad * math.cos(a)),
int(y + max(random_state.rand(), 0.4) * rad * math.sin(a)),
]
for a in angles
]
)
# Filter the points that are too close or that have an angle too flat
norms = [
np.linalg.norm(points[(i - 1) % num_corners, :] - points[i, :])
for i in range(num_corners)
]
mask = np.array(norms) > 0.01
points = points[mask, :]
num_corners = points.shape[0]
corner_angles = [
angle_between_vectors(
points[(i - 1) % num_corners, :] - points[i, :],
points[(i + 1) % num_corners, :] - points[i, :],
)
for i in range(num_corners)
]
mask = np.array(corner_angles) < (2 * math.pi / 3)
points = points[mask, :]
num_corners = points.shape[0]
# Get junction pairs from points
segments = np.zeros([0, 4])
# Used to record all the segments no matter we are going to label it or not.
segments_raw = np.zeros([0, 4])
for idx in range(num_corners):
if idx == (num_corners - 1):
p1 = points[idx]
p2 = points[0]
else:
p1 = points[idx]
p2 = points[idx + 1]
segment = np.concatenate((p1, p2), axis=0)
# Only record the segments longer than min_label_len
seg_len = np.sqrt(np.sum((p1 - p2) ** 2))
if seg_len >= min_label_len:
segments = np.concatenate((segments, segment[None, ...]), axis=0)
segments_raw = np.concatenate((segments_raw, segment[None, ...]), axis=0)
# If not enough corner, just regenerate one
if (num_corners < 3) or check_segment_len(segments_raw, min_len):
return draw_polygon(img, max_sides, min_len, min_label_len)
# Get junctions from segments
junctions_all = np.concatenate((segments[:, :2], segments[:, 2:]), axis=0)
if junctions_all.shape[0] == 0:
junc_points = None
line_map = None
else:
junc_points = np.unique(junctions_all, axis=0)
# Get the line map
line_map = get_line_map(junc_points, segments)
corners = points.reshape((-1, 1, 2))
col = get_random_color(int(np.mean(img)))
cv.fillPoly(img, [corners], col)
return {"points": junc_points, "line_map": line_map}
def overlap(center, rad, centers, rads):
"""Check that the circle with (center, rad)
doesn't overlap with the other circles."""
flag = False
for i in range(len(rads)):
if np.linalg.norm(center - centers[i]) < rad + rads[i]:
flag = True
break
return flag
def angle_between_vectors(v1, v2):
"""Compute the angle (in rad) between the two vectors v1 and v2."""
v1_u = v1 / np.linalg.norm(v1)
v2_u = v2 / np.linalg.norm(v2)
return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))
def draw_multiple_polygons(
img,
max_sides=8,
nb_polygons=30,
min_len=32,
min_label_len=64,
safe_margin=5,
**extra
):
"""Draw multiple polygons with a random number of corners
and return the junction points + line map.
Parameters:
max_sides: maximal number of sides + 1
nb_polygons: maximal number of polygons
"""
segments = np.empty((0, 4), dtype=np.int)
label_segments = np.empty((0, 4), dtype=np.int)
centers = []
rads = []
points = np.empty((0, 2), dtype=np.int)
background_color = int(np.mean(img))
min_dim = min(img.shape[0], img.shape[1])
# Convert length constrain to pixel if given float number
if isinstance(min_len, float) and min_len <= 1.0:
min_len = int(min_dim * min_len)
if isinstance(min_label_len, float) and min_label_len <= 1.0:
min_label_len = int(min_dim * min_label_len)
if isinstance(safe_margin, float) and safe_margin <= 1.0:
safe_margin = int(min_dim * safe_margin)
# Sequentially generate polygons
for i in range(nb_polygons):
num_corners = random_state.randint(3, max_sides)
min_dim = min(img.shape[0], img.shape[1])
# Also add the real radius
rad = max(random_state.rand() * min_dim / 2, min_dim / 9)
rad_real = rad - safe_margin
# Center of a circle
x = random_state.randint(rad, img.shape[1] - rad)
y = random_state.randint(rad, img.shape[0] - rad)
# Sample num_corners points inside the circle
slices = np.linspace(0, 2 * math.pi, num_corners + 1)
angles = [
slices[i] + random_state.rand() * (slices[i + 1] - slices[i])
for i in range(num_corners)
]
# Sample outer points and inner points
new_points = []
new_points_real = []
for a in angles:
x_offset = max(random_state.rand(), 0.4)
y_offset = max(random_state.rand(), 0.4)
new_points.append(
[
int(x + x_offset * rad * math.cos(a)),
int(y + y_offset * rad * math.sin(a)),
]
)
new_points_real.append(
[
int(x + x_offset * rad_real * math.cos(a)),
int(y + y_offset * rad_real * math.sin(a)),
]
)
new_points = np.array(new_points)
new_points_real = np.array(new_points_real)
# Filter the points that are too close or that have an angle too flat
norms = [
np.linalg.norm(new_points[(i - 1) % num_corners, :] - new_points[i, :])
for i in range(num_corners)
]
mask = np.array(norms) > 0.01
new_points = new_points[mask, :]
new_points_real = new_points_real[mask, :]
num_corners = new_points.shape[0]
corner_angles = [
angle_between_vectors(
new_points[(i - 1) % num_corners, :] - new_points[i, :],
new_points[(i + 1) % num_corners, :] - new_points[i, :],
)
for i in range(num_corners)
]
mask = np.array(corner_angles) < (2 * math.pi / 3)
new_points = new_points[mask, :]
new_points_real = new_points_real[mask, :]
num_corners = new_points.shape[0]
# Not enough corners
if num_corners < 3:
continue
# Segments for checking overlap (outer circle)
new_segments = np.zeros((1, 4, num_corners))
new_segments[:, 0, :] = [new_points[i][0] for i in range(num_corners)]
new_segments[:, 1, :] = [new_points[i][1] for i in range(num_corners)]
new_segments[:, 2, :] = [
new_points[(i + 1) % num_corners][0] for i in range(num_corners)
]
new_segments[:, 3, :] = [
new_points[(i + 1) % num_corners][1] for i in range(num_corners)
]
# Segments to record (inner circle)
new_segments_real = np.zeros((1, 4, num_corners))
new_segments_real[:, 0, :] = [new_points_real[i][0] for i in range(num_corners)]
new_segments_real[:, 1, :] = [new_points_real[i][1] for i in range(num_corners)]
new_segments_real[:, 2, :] = [
new_points_real[(i + 1) % num_corners][0] for i in range(num_corners)
]
new_segments_real[:, 3, :] = [
new_points_real[(i + 1) % num_corners][1] for i in range(num_corners)
]
# Check that the polygon will not overlap with pre-existing shapes
if intersect(
segments[:, 0:2, None],
segments[:, 2:4, None],
new_segments[:, 0:2, :],
new_segments[:, 2:4, :],
3,
) or overlap(np.array([x, y]), rad, centers, rads):
continue
# Check that the the edges of the polygon is not too short
if check_segment_len(new_segments_real, min_len):
continue
# If the polygon is valid, append it to the polygon set
centers.append(np.array([x, y]))
rads.append(rad)
new_segments = np.reshape(np.swapaxes(new_segments, 0, 2), (-1, 4))
segments = np.concatenate([segments, new_segments], axis=0)
# Only record the segments longer than min_label_len
new_segments_real = np.reshape(np.swapaxes(new_segments_real, 0, 2), (-1, 4))
points1 = new_segments_real[:, :2]
points2 = new_segments_real[:, 2:]
seg_len = np.sqrt(np.sum((points1 - points2) ** 2, axis=1))
new_label_segment = new_segments_real[seg_len >= min_label_len, :]
label_segments = np.concatenate([label_segments, new_label_segment], axis=0)
# Color the polygon with a custom background
corners = new_points_real.reshape((-1, 1, 2))
mask = np.zeros(img.shape, np.uint8)
custom_background = generate_custom_background(
img.shape, background_color, **extra
)
cv.fillPoly(mask, [corners], 255)
locs = np.where(mask != 0)
img[locs[0], locs[1]] = custom_background[locs[0], locs[1]]
points = np.concatenate([points, new_points], axis=0)
# Get all junctions from label segments
junctions_all = np.concatenate(
(label_segments[:, :2], label_segments[:, 2:]), axis=0
)
if junctions_all.shape[0] == 0:
junc_points = None
line_map = None
else:
junc_points = np.unique(junctions_all, axis=0)
# Generate line map from points and segments
line_map = get_line_map(junc_points, label_segments)
return {"points": junc_points, "line_map": line_map}
def draw_ellipses(img, nb_ellipses=20):
"""Draw several ellipses.
Parameters:
nb_ellipses: maximal number of ellipses
"""
centers = np.empty((0, 2), dtype=np.int)
rads = np.empty((0, 1), dtype=np.int)
min_dim = min(img.shape[0], img.shape[1]) / 4
background_color = int(np.mean(img))
for i in range(nb_ellipses):
ax = int(max(random_state.rand() * min_dim, min_dim / 5))
ay = int(max(random_state.rand() * min_dim, min_dim / 5))
max_rad = max(ax, ay)
x = random_state.randint(max_rad, img.shape[1] - max_rad) # center
y = random_state.randint(max_rad, img.shape[0] - max_rad)
new_center = np.array([[x, y]])
# Check that the ellipsis will not overlap with pre-existing shapes
diff = centers - new_center
if np.any(max_rad > (np.sqrt(np.sum(diff * diff, axis=1)) - rads)):
continue
centers = np.concatenate([centers, new_center], axis=0)
rads = np.concatenate([rads, np.array([[max_rad]])], axis=0)
col = get_random_color(background_color)
angle = random_state.rand() * 90
cv.ellipse(img, (x, y), (ax, ay), angle, 0, 360, col, -1)
return np.empty((0, 2), dtype=np.int)
def draw_star(img, nb_branches=6, min_len=32, min_label_len=64):
"""Draw a star and return the junction points + line map.
Parameters:
nb_branches: number of branches of the star
"""
num_branches = random_state.randint(3, nb_branches)
min_dim = min(img.shape[0], img.shape[1])
# Convert length constrain to pixel if given float number
if isinstance(min_len, float) and min_len <= 1.0:
min_len = int(min_dim * min_len)
if isinstance(min_label_len, float) and min_label_len <= 1.0:
min_label_len = int(min_dim * min_label_len)
thickness = random_state.randint(min_dim * 0.01, min_dim * 0.025)
rad = max(random_state.rand() * min_dim / 2, min_dim / 5)
x = random_state.randint(rad, img.shape[1] - rad)
y = random_state.randint(rad, img.shape[0] - rad)
# Sample num_branches points inside the circle
slices = np.linspace(0, 2 * math.pi, num_branches + 1)
angles = [
slices[i] + random_state.rand() * (slices[i + 1] - slices[i])
for i in range(num_branches)
]
points = np.array(
[
[
int(x + max(random_state.rand(), 0.3) * rad * math.cos(a)),
int(y + max(random_state.rand(), 0.3) * rad * math.sin(a)),
]
for a in angles
]
)
points = np.concatenate(([[x, y]], points), axis=0)
# Generate segments and check the length
segments = np.array([[x, y, _[0], _[1]] for _ in points[1:, :]])
if check_segment_len(segments, min_len):
return draw_star(img, nb_branches, min_len, min_label_len)
# Only record the segments longer than min_label_len
points1 = segments[:, :2]
points2 = segments[:, 2:]
seg_len = np.sqrt(np.sum((points1 - points2) ** 2, axis=1))
label_segments = segments[seg_len >= min_label_len, :]
# Get all junctions from label segments
junctions_all = np.concatenate(
(label_segments[:, :2], label_segments[:, 2:]), axis=0
)
if junctions_all.shape[0] == 0:
junc_points = None
line_map = None
# Get all unique junction points
else:
junc_points = np.unique(junctions_all, axis=0)
# Generate line map from points and segments
line_map = get_line_map(junc_points, label_segments)
background_color = int(np.mean(img))
for i in range(1, num_branches + 1):
col = get_random_color(background_color)
cv.line(
img,
(points[0][0], points[0][1]),
(points[i][0], points[i][1]),
col,
thickness,
)
return {"points": junc_points, "line_map": line_map}
def draw_checkerboard_multiseg(
img,
max_rows=7,
max_cols=7,
transform_params=(0.05, 0.15),
min_label_len=64,
seed=None,
):
"""Draw a checkerboard and output the junctions + line segments
Parameters:
max_rows: maximal number of rows + 1
max_cols: maximal number of cols + 1
transform_params: set the range of the parameters of the transformations
"""
if seed is None:
global random_state
else:
random_state = np.random.RandomState(seed)
background_color = int(np.mean(img))
min_dim = min(img.shape)
if isinstance(min_label_len, float) and min_label_len <= 1.0:
min_label_len = int(min_dim * min_label_len)
# Create the grid
rows = random_state.randint(3, max_rows) # number of rows
cols = random_state.randint(3, max_cols) # number of cols
s = min((img.shape[1] - 1) // cols, (img.shape[0] - 1) // rows)
x_coord = np.tile(range(cols + 1), rows + 1).reshape(((rows + 1) * (cols + 1), 1))
y_coord = np.repeat(range(rows + 1), cols + 1).reshape(((rows + 1) * (cols + 1), 1))
# points are the grid coordinates
points = s * np.concatenate([x_coord, y_coord], axis=1)
# Warp the grid using an affine transformation and an homography
alpha_affine = np.max(img.shape) * (
transform_params[0] + random_state.rand() * transform_params[1]
)
center_square = np.float32(img.shape) // 2
min_dim = min(img.shape)
square_size = min_dim // 3
pts1 = np.float32(
[
center_square + square_size,
[center_square[0] + square_size, center_square[1] - square_size],
center_square - square_size,
[center_square[0] - square_size, center_square[1] + square_size],
]
)
pts2 = pts1 + random_state.uniform(
-alpha_affine, alpha_affine, size=pts1.shape
).astype(np.float32)
affine_transform = cv.getAffineTransform(pts1[:3], pts2[:3])
pts2 = pts1 + random_state.uniform(
-alpha_affine / 2, alpha_affine / 2, size=pts1.shape
).astype(np.float32)
perspective_transform = cv.getPerspectiveTransform(pts1, pts2)
# Apply the affine transformation
points = np.transpose(
np.concatenate((points, np.ones(((rows + 1) * (cols + 1), 1))), axis=1)
)
warped_points = np.transpose(np.dot(affine_transform, points))
# Apply the homography
warped_col0 = np.add(
np.sum(np.multiply(warped_points, perspective_transform[0, :2]), axis=1),
perspective_transform[0, 2],
)
warped_col1 = np.add(
np.sum(np.multiply(warped_points, perspective_transform[1, :2]), axis=1),
perspective_transform[1, 2],
)
warped_col2 = np.add(
np.sum(np.multiply(warped_points, perspective_transform[2, :2]), axis=1),
perspective_transform[2, 2],
)
warped_col0 = np.divide(warped_col0, warped_col2)
warped_col1 = np.divide(warped_col1, warped_col2)
warped_points = np.concatenate([warped_col0[:, None], warped_col1[:, None]], axis=1)
warped_points_float = warped_points.copy()
warped_points = warped_points.astype(int)
# Fill the rectangles
colors = np.zeros((rows * cols,), np.int32)
for i in range(rows):
for j in range(cols):
# Get a color that contrast with the neighboring cells
if i == 0 and j == 0:
col = get_random_color(background_color)
else:
neighboring_colors = []
if i != 0:
neighboring_colors.append(colors[(i - 1) * cols + j])
if j != 0:
neighboring_colors.append(colors[i * cols + j - 1])
col = get_different_color(np.array(neighboring_colors))
colors[i * cols + j] = col
# Fill the cell
cv.fillConvexPoly(
img,
np.array(
[
(
warped_points[i * (cols + 1) + j, 0],
warped_points[i * (cols + 1) + j, 1],
),
(
warped_points[i * (cols + 1) + j + 1, 0],
warped_points[i * (cols + 1) + j + 1, 1],
),
(
warped_points[(i + 1) * (cols + 1) + j + 1, 0],
warped_points[(i + 1) * (cols + 1) + j + 1, 1],
),
(
warped_points[(i + 1) * (cols + 1) + j, 0],
warped_points[(i + 1) * (cols + 1) + j, 1],
),
]
),
col,
)
label_segments = np.empty([0, 4], dtype=np.int)
# Iterate through rows
for row_idx in range(rows + 1):
# Include all the combination of the junctions
# Iterate through all the combination of junction index in that row
multi_seg_lst = [
np.array(
[
warped_points_float[id1, 0],
warped_points_float[id1, 1],
warped_points_float[id2, 0],
warped_points_float[id2, 1],
]
)[None, ...]
for (id1, id2) in combinations(
range(row_idx * (cols + 1), (row_idx + 1) * (cols + 1), 1), 2
)
]
multi_seg = np.concatenate(multi_seg_lst, axis=0)
label_segments = np.concatenate((label_segments, multi_seg), axis=0)
# Iterate through columns
for col_idx in range(cols + 1): # for 5 columns, we will have 5 + 1 edges
# Include all the combination of the junctions
# Iterate throuhg all the combination of junction index in that column
multi_seg_lst = [
np.array(
[
warped_points_float[id1, 0],
warped_points_float[id1, 1],
warped_points_float[id2, 0],
warped_points_float[id2, 1],
]
)[None, ...]
for (id1, id2) in combinations(
range(col_idx, col_idx + ((rows + 1) * (cols + 1)), cols + 1), 2
)
]
multi_seg = np.concatenate(multi_seg_lst, axis=0)
label_segments = np.concatenate((label_segments, multi_seg), axis=0)
label_segments_filtered = np.zeros([0, 4])
# Define image boundary polygon (in x y manner)
image_poly = shapely.geometry.Polygon(
[
[0, 0],
[img.shape[1] - 1, 0],
[img.shape[1] - 1, img.shape[0] - 1],
[0, img.shape[0] - 1],
]
)
for idx in range(label_segments.shape[0]):
# Get the line segment
seg_raw = label_segments[idx, :]
seg = shapely.geometry.LineString([seg_raw[:2], seg_raw[2:]])
# The line segment is just inside the image.
if seg.intersection(image_poly) == seg:
label_segments_filtered = np.concatenate(
(label_segments_filtered, seg_raw[None, ...]), axis=0
)
# Intersect with the image.
elif seg.intersects(image_poly):
# Check intersection
try:
p = np.array(seg.intersection(image_poly).coords).reshape([-1, 4])
# If intersect with eact one point
except:
continue
segment = p
label_segments_filtered = np.concatenate(
(label_segments_filtered, segment), axis=0
)
else:
continue
label_segments = np.round(label_segments_filtered).astype(np.int)
# Only record the segments longer than min_label_len
points1 = label_segments[:, :2]
points2 = label_segments[:, 2:]
seg_len = np.sqrt(np.sum((points1 - points2) ** 2, axis=1))
label_segments = label_segments[seg_len >= min_label_len, :]
# Get all junctions from label segments
junc_points, line_map = get_unique_junctions(label_segments, min_label_len)
# Draw lines on the boundaries of the board at random
nb_rows = random_state.randint(2, rows + 2)
nb_cols = random_state.randint(2, cols + 2)
thickness = random_state.randint(min_dim * 0.01, min_dim * 0.015)
for _ in range(nb_rows):
row_idx = random_state.randint(rows + 1)
col_idx1 = random_state.randint(cols + 1)
col_idx2 = random_state.randint(cols + 1)
col = get_random_color(background_color)
cv.line(
img,
(
warped_points[row_idx * (cols + 1) + col_idx1, 0],
warped_points[row_idx * (cols + 1) + col_idx1, 1],
),
(
warped_points[row_idx * (cols + 1) + col_idx2, 0],
warped_points[row_idx * (cols + 1) + col_idx2, 1],
),
col,
thickness,
)
for _ in range(nb_cols):
col_idx = random_state.randint(cols + 1)
row_idx1 = random_state.randint(rows + 1)
row_idx2 = random_state.randint(rows + 1)
col = get_random_color(background_color)
cv.line(
img,
(
warped_points[row_idx1 * (cols + 1) + col_idx, 0],
warped_points[row_idx1 * (cols + 1) + col_idx, 1],
),
(
warped_points[row_idx2 * (cols + 1) + col_idx, 0],
warped_points[row_idx2 * (cols + 1) + col_idx, 1],
),
col,
thickness,
)
# Keep only the points inside the image
points = keep_points_inside(warped_points, img.shape[:2])
return {"points": junc_points, "line_map": line_map}
def draw_stripes_multiseg(
img,
max_nb_cols=13,
min_len=0.04,
min_label_len=64,
transform_params=(0.05, 0.15),
seed=None,
):
"""Draw stripes in a distorted rectangle
and output the junctions points + line map.
Parameters:
max_nb_cols: maximal number of stripes to be drawn
min_width_ratio: the minimal width of a stripe is
min_width_ratio * smallest dimension of the image
transform_params: set the range of the parameters of the transformations
"""
# Set the optional random seed (most for debugging)
if seed is None:
global random_state
else:
random_state = np.random.RandomState(seed)
background_color = int(np.mean(img))
# Create the grid
board_size = (
int(img.shape[0] * (1 + random_state.rand())),
int(img.shape[1] * (1 + random_state.rand())),
)
# Number of cols
col = random_state.randint(5, max_nb_cols)
cols = np.concatenate(
[board_size[1] * random_state.rand(col - 1), np.array([0, board_size[1] - 1])],
axis=0,
)
cols = np.unique(cols.astype(int))
# Remove the indices that are too close
min_dim = min(img.shape)
# Convert length constrain to pixel if given float number
if isinstance(min_len, float) and min_len <= 1.0:
min_len = int(min_dim * min_len)
if isinstance(min_label_len, float) and min_label_len <= 1.0:
min_label_len = int(min_dim * min_label_len)
cols = cols[
(np.concatenate([cols[1:], np.array([board_size[1] + min_len])], axis=0) - cols)
>= min_len
]
# Update the number of cols
col = cols.shape[0] - 1
cols = np.reshape(cols, (col + 1, 1))
cols1 = np.concatenate([cols, np.zeros((col + 1, 1), np.int32)], axis=1)
cols2 = np.concatenate(
[cols, (board_size[0] - 1) * np.ones((col + 1, 1), np.int32)], axis=1
)
points = np.concatenate([cols1, cols2], axis=0)
# Warp the grid using an affine transformation and a homography
alpha_affine = np.max(img.shape) * (
transform_params[0] + random_state.rand() * transform_params[1]
)
center_square = np.float32(img.shape) // 2
square_size = min(img.shape) // 3
pts1 = np.float32(
[
center_square + square_size,
[center_square[0] + square_size, center_square[1] - square_size],
center_square - square_size,
[center_square[0] - square_size, center_square[1] + square_size],
]
)
pts2 = pts1 + random_state.uniform(
-alpha_affine, alpha_affine, size=pts1.shape
).astype(np.float32)
affine_transform = cv.getAffineTransform(pts1[:3], pts2[:3])
pts2 = pts1 + random_state.uniform(
-alpha_affine / 2, alpha_affine / 2, size=pts1.shape
).astype(np.float32)
perspective_transform = cv.getPerspectiveTransform(pts1, pts2)
# Apply the affine transformation
points = np.transpose(np.concatenate((points, np.ones((2 * (col + 1), 1))), axis=1))
warped_points = np.transpose(np.dot(affine_transform, points))
# Apply the homography
warped_col0 = np.add(
np.sum(np.multiply(warped_points, perspective_transform[0, :2]), axis=1),
perspective_transform[0, 2],
)
warped_col1 = np.add(
np.sum(np.multiply(warped_points, perspective_transform[1, :2]), axis=1),
perspective_transform[1, 2],
)
warped_col2 = np.add(
np.sum(np.multiply(warped_points, perspective_transform[2, :2]), axis=1),
perspective_transform[2, 2],
)
warped_col0 = np.divide(warped_col0, warped_col2)
warped_col1 = np.divide(warped_col1, warped_col2)
warped_points = np.concatenate([warped_col0[:, None], warped_col1[:, None]], axis=1)
warped_points_float = warped_points.copy()
warped_points = warped_points.astype(int)
# Fill the rectangles and get the segments
color = get_random_color(background_color)
# segments_debug = np.zeros([0, 4])
for i in range(col):
# Fill the color
color = (color + 128 + random_state.randint(-30, 30)) % 256
cv.fillConvexPoly(
img,
np.array(
[
(warped_points[i, 0], warped_points[i, 1]),
(warped_points[i + 1, 0], warped_points[i + 1, 1]),
(warped_points[i + col + 2, 0], warped_points[i + col + 2, 1]),
(warped_points[i + col + 1, 0], warped_points[i + col + 1, 1]),
]
),
color,
)
segments = np.zeros([0, 4])
row = 1 # in stripes case
# Iterate through rows
for row_idx in range(row + 1):
# Include all the combination of the junctions
# Iterate through all the combination of junction index in that row
multi_seg_lst = [
np.array(
[
warped_points_float[id1, 0],
warped_points_float[id1, 1],
warped_points_float[id2, 0],
warped_points_float[id2, 1],
]
)[None, ...]
for (id1, id2) in combinations(
range(row_idx * (col + 1), (row_idx + 1) * (col + 1), 1), 2
)
]
multi_seg = np.concatenate(multi_seg_lst, axis=0)
segments = np.concatenate((segments, multi_seg), axis=0)
# Iterate through columns
for col_idx in range(col + 1): # for 5 columns, we will have 5 + 1 edges.
# Include all the combination of the junctions
# Iterate throuhg all the combination of junction index in that column
multi_seg_lst = [
np.array(
[
warped_points_float[id1, 0],
warped_points_float[id1, 1],
warped_points_float[id2, 0],
warped_points_float[id2, 1],
]
)[None, ...]
for (id1, id2) in combinations(
range(col_idx, col_idx + (row * col) + 2, col + 1), 2
)
]
multi_seg = np.concatenate(multi_seg_lst, axis=0)
segments = np.concatenate((segments, multi_seg), axis=0)
# Select and refine the segments
segments_new = np.zeros([0, 4])
# Define image boundary polygon (in x y manner)
image_poly = shapely.geometry.Polygon(
[
[0, 0],
[img.shape[1] - 1, 0],
[img.shape[1] - 1, img.shape[0] - 1],
[0, img.shape[0] - 1],
]
)
for idx in range(segments.shape[0]):
# Get the line segment
seg_raw = segments[idx, :]
seg = shapely.geometry.LineString([seg_raw[:2], seg_raw[2:]])
# The line segment is just inside the image.
if seg.intersection(image_poly) == seg:
segments_new = np.concatenate((segments_new, seg_raw[None, ...]), axis=0)
# Intersect with the image.
elif seg.intersects(image_poly):
# Check intersection
try:
p = np.array(seg.intersection(image_poly).coords).reshape([-1, 4])
# If intersect at exact one point, just continue.
except:
continue
segment = p
segments_new = np.concatenate((segments_new, segment), axis=0)
else:
continue
segments = (np.round(segments_new)).astype(np.int)
# Only record the segments longer than min_label_len
points1 = segments[:, :2]
points2 = segments[:, 2:]
seg_len = np.sqrt(np.sum((points1 - points2) ** 2, axis=1))
label_segments = segments[seg_len >= min_label_len, :]
# Get all junctions from label segments
junctions_all = np.concatenate(
(label_segments[:, :2], label_segments[:, 2:]), axis=0
)
if junctions_all.shape[0] == 0:
junc_points = None
line_map = None
# Get all unique junction points
else:
junc_points = np.unique(junctions_all, axis=0)
# Generate line map from points and segments
line_map = get_line_map(junc_points, label_segments)
# Draw lines on the boundaries of the stripes at random
nb_rows = random_state.randint(2, 5)
nb_cols = random_state.randint(2, col + 2)
thickness = random_state.randint(min_dim * 0.01, min_dim * 0.011)
for _ in range(nb_rows):
row_idx = random_state.choice([0, col + 1])
col_idx1 = random_state.randint(col + 1)
col_idx2 = random_state.randint(col + 1)
color = get_random_color(background_color)
cv.line(
img,
(
warped_points[row_idx + col_idx1, 0],
warped_points[row_idx + col_idx1, 1],
),
(
warped_points[row_idx + col_idx2, 0],
warped_points[row_idx + col_idx2, 1],
),
color,
thickness,
)
for _ in range(nb_cols):
col_idx = random_state.randint(col + 1)
color = get_random_color(background_color)
cv.line(
img,
(warped_points[col_idx, 0], warped_points[col_idx, 1]),
(warped_points[col_idx + col + 1, 0], warped_points[col_idx + col + 1, 1]),
color,
thickness,
)
# Keep only the points inside the image
# points = keep_points_inside(warped_points, img.shape[:2])
return {"points": junc_points, "line_map": line_map}
def draw_cube(
img,
min_size_ratio=0.2,
min_label_len=64,
scale_interval=(0.4, 0.6),
trans_interval=(0.5, 0.2),
):
"""Draw a 2D projection of a cube and output the visible juntions.
Parameters:
min_size_ratio: min(img.shape) * min_size_ratio is the smallest
achievable cube side size
scale_interval: the scale is between scale_interval[0] and
scale_interval[0]+scale_interval[1]
trans_interval: the translation is between img.shape*trans_interval[0]
and img.shape*(trans_interval[0] + trans_interval[1])
"""
# Generate a cube and apply to it an affine transformation
# The order matters!
# The indices of two adjacent vertices differ only of one bit (Gray code)
background_color = int(np.mean(img))
min_dim = min(img.shape[:2])
min_side = min_dim * min_size_ratio
lx = min_side + random_state.rand() * 2 * min_dim / 3 # dims of the cube
ly = min_side + random_state.rand() * 2 * min_dim / 3
lz = min_side + random_state.rand() * 2 * min_dim / 3
cube = np.array(
[
[0, 0, 0],
[lx, 0, 0],
[0, ly, 0],
[lx, ly, 0],
[0, 0, lz],
[lx, 0, lz],
[0, ly, lz],
[lx, ly, lz],
]
)
rot_angles = random_state.rand(3) * 3 * math.pi / 10.0 + math.pi / 10.0
rotation_1 = np.array(
[
[math.cos(rot_angles[0]), -math.sin(rot_angles[0]), 0],
[math.sin(rot_angles[0]), math.cos(rot_angles[0]), 0],
[0, 0, 1],
]
)
rotation_2 = np.array(
[
[1, 0, 0],
[0, math.cos(rot_angles[1]), -math.sin(rot_angles[1])],
[0, math.sin(rot_angles[1]), math.cos(rot_angles[1])],
]
)
rotation_3 = np.array(
[
[math.cos(rot_angles[2]), 0, -math.sin(rot_angles[2])],
[0, 1, 0],
[math.sin(rot_angles[2]), 0, math.cos(rot_angles[2])],
]
)
scaling = np.array(
[
[scale_interval[0] + random_state.rand() * scale_interval[1], 0, 0],
[0, scale_interval[0] + random_state.rand() * scale_interval[1], 0],
[0, 0, scale_interval[0] + random_state.rand() * scale_interval[1]],
]
)
trans = np.array(
[
img.shape[1] * trans_interval[0]
+ random_state.randint(
-img.shape[1] * trans_interval[1], img.shape[1] * trans_interval[1]
),
img.shape[0] * trans_interval[0]
+ random_state.randint(
-img.shape[0] * trans_interval[1], img.shape[0] * trans_interval[1]
),
0,
]
)
cube = trans + np.transpose(
np.dot(
scaling,
np.dot(
rotation_1, np.dot(rotation_2, np.dot(rotation_3, np.transpose(cube)))
),
)
)
# The hidden corner is 0 by construction
# The front one is 7
cube = cube[:, :2] # project on the plane z=0
cube = cube.astype(int)
points = cube[1:, :] # get rid of the hidden corner
# Get the three visible faces
faces = np.array([[7, 3, 1, 5], [7, 5, 4, 6], [7, 6, 2, 3]])
# Get all visible line segments
segments = np.zeros([0, 4])
# Iterate through all the faces
for face_idx in range(faces.shape[0]):
face = faces[face_idx, :]
# Brute-forcely expand all the segments
segment = np.array(
[
np.concatenate((cube[face[0]], cube[face[1]]), axis=0),
np.concatenate((cube[face[1]], cube[face[2]]), axis=0),
np.concatenate((cube[face[2]], cube[face[3]]), axis=0),
np.concatenate((cube[face[3]], cube[face[0]]), axis=0),
]
)
segments = np.concatenate((segments, segment), axis=0)
# Select and refine the segments
segments_new = np.zeros([0, 4])
# Define image boundary polygon (in x y manner)
image_poly = shapely.geometry.Polygon(
[
[0, 0],
[img.shape[1] - 1, 0],
[img.shape[1] - 1, img.shape[0] - 1],
[0, img.shape[0] - 1],
]
)
for idx in range(segments.shape[0]):
# Get the line segment
seg_raw = segments[idx, :]
seg = shapely.geometry.LineString([seg_raw[:2], seg_raw[2:]])
# The line segment is just inside the image.
if seg.intersection(image_poly) == seg:
segments_new = np.concatenate((segments_new, seg_raw[None, ...]), axis=0)
# Intersect with the image.
elif seg.intersects(image_poly):
try:
p = np.array(seg.intersection(image_poly).coords).reshape([-1, 4])
except:
continue
segment = p
segments_new = np.concatenate((segments_new, segment), axis=0)
else:
continue
segments = (np.round(segments_new)).astype(np.int)
# Only record the segments longer than min_label_len
points1 = segments[:, :2]
points2 = segments[:, 2:]
seg_len = np.sqrt(np.sum((points1 - points2) ** 2, axis=1))
label_segments = segments[seg_len >= min_label_len, :]
# Get all junctions from label segments
junctions_all = np.concatenate(
(label_segments[:, :2], label_segments[:, 2:]), axis=0
)
if junctions_all.shape[0] == 0:
junc_points = None
line_map = None
# Get all unique junction points
else:
junc_points = np.unique(junctions_all, axis=0)
# Generate line map from points and segments
line_map = get_line_map(junc_points, label_segments)
# Fill the faces and draw the contours
col_face = get_random_color(background_color)
for i in [0, 1, 2]:
cv.fillPoly(img, [cube[faces[i]].reshape((-1, 1, 2))], col_face)
thickness = random_state.randint(min_dim * 0.003, min_dim * 0.015)
for i in [0, 1, 2]:
for j in [0, 1, 2, 3]:
col_edge = (
col_face + 128 + random_state.randint(-64, 64)
) % 256 # color that constrats with the face color
cv.line(
img,
(cube[faces[i][j], 0], cube[faces[i][j], 1]),
(cube[faces[i][(j + 1) % 4], 0], cube[faces[i][(j + 1) % 4], 1]),
col_edge,
thickness,
)
return {"points": junc_points, "line_map": line_map}
def gaussian_noise(img):
"""Apply random noise to the image."""
cv.randu(img, 0, 255)
return {"points": None, "line_map": None}