Realcat
add: GIM (https://github.com/xuelunshen/gim)
4dfb78b
raw
history blame
12 kB
import math
from typing import Tuple
import numpy as np
import torch
from .utils import from_homogeneous, to_homogeneous
def flat2mat(H):
return np.reshape(np.concatenate([H, np.ones_like(H[:, :1])], axis=1), [3, 3])
# Homography creation
def create_center_patch(shape, patch_shape=None):
if patch_shape is None:
patch_shape = shape
width, height = shape
pwidth, pheight = patch_shape
left = int((width - pwidth) / 2)
bottom = int((height - pheight) / 2)
right = int((width + pwidth) / 2)
top = int((height + pheight) / 2)
return np.array([[left, bottom], [left, top], [right, top], [right, bottom]])
def check_convex(patch, min_convexity=0.05):
"""Checks if given polygon vertices [N,2] form a convex shape"""
for i in range(patch.shape[0]):
x1, y1 = patch[(i - 1) % patch.shape[0]]
x2, y2 = patch[i]
x3, y3 = patch[(i + 1) % patch.shape[0]]
if (x2 - x1) * (y3 - y2) - (x3 - x2) * (y2 - y1) > -min_convexity:
return False
return True
def sample_homography_corners(
shape,
patch_shape,
difficulty=1.0,
translation=0.4,
n_angles=10,
max_angle=90,
min_convexity=0.05,
rng=np.random,
):
max_angle = max_angle / 180.0 * math.pi
width, height = shape
pwidth, pheight = width * (1 - difficulty), height * (1 - difficulty)
min_pts1 = create_center_patch(shape, (pwidth, pheight))
full = create_center_patch(shape)
pts2 = create_center_patch(patch_shape)
scale = min_pts1 - full
found_valid = False
cnt = -1
while not found_valid:
offsets = rng.uniform(0.0, 1.0, size=(4, 2)) * scale
pts1 = full + offsets
found_valid = check_convex(pts1 / np.array(shape), min_convexity)
cnt += 1
# re-center
pts1 = pts1 - np.mean(pts1, axis=0, keepdims=True)
pts1 = pts1 + np.mean(min_pts1, axis=0, keepdims=True)
# Rotation
if n_angles > 0 and difficulty > 0:
angles = np.linspace(-max_angle * difficulty, max_angle * difficulty, n_angles)
rng.shuffle(angles)
rng.shuffle(angles)
angles = np.concatenate([[0.0], angles], axis=0)
center = np.mean(pts1, axis=0, keepdims=True)
rot_mat = np.reshape(
np.stack(
[np.cos(angles), -np.sin(angles), np.sin(angles), np.cos(angles)],
axis=1,
),
[-1, 2, 2],
)
rotated = (
np.matmul(
np.tile(np.expand_dims(pts1 - center, axis=0), [n_angles + 1, 1, 1]),
rot_mat,
)
+ center
)
for idx in range(1, n_angles):
warped_points = rotated[idx] / np.array(shape)
if np.all((warped_points >= 0.0) & (warped_points < 1.0)):
pts1 = rotated[idx]
break
# Translation
if translation > 0:
min_trans = -np.min(pts1, axis=0)
max_trans = shape - np.max(pts1, axis=0)
trans = rng.uniform(min_trans, max_trans)[None]
pts1 += trans * translation * difficulty
H = compute_homography(pts1, pts2, [1.0, 1.0])
warped = warp_points(full, H, inverse=False)
return H, full, warped, patch_shape
def compute_homography(pts1_, pts2_, shape):
"""Compute the homography matrix from 4 point correspondences"""
# Rescale to actual size
shape = np.array(shape[::-1], dtype=np.float32) # different convention [y, x]
pts1 = pts1_ * np.expand_dims(shape, axis=0)
pts2 = pts2_ * np.expand_dims(shape, axis=0)
def ax(p, q):
return [p[0], p[1], 1, 0, 0, 0, -p[0] * q[0], -p[1] * q[0]]
def ay(p, q):
return [0, 0, 0, p[0], p[1], 1, -p[0] * q[1], -p[1] * q[1]]
a_mat = np.stack([f(pts1[i], pts2[i]) for i in range(4) for f in (ax, ay)], axis=0)
p_mat = np.transpose(
np.stack([[pts2[i][j] for i in range(4) for j in range(2)]], axis=0)
)
homography = np.transpose(np.linalg.solve(a_mat, p_mat))
return flat2mat(homography)
# Point warping utils
def warp_points(points, homography, inverse=True):
"""
Warp a list of points with the INVERSE of the given homography.
The inverse is used to be coherent with tf.contrib.image.transform
Arguments:
points: list of N points, shape (N, 2).
homography: batched or not (shapes (B, 3, 3) and (3, 3) respectively).
Returns: a Tensor of shape (N, 2) or (B, N, 2) (depending on whether the homography
is batched) containing the new coordinates of the warped points.
"""
H = homography[None] if len(homography.shape) == 2 else homography
# Get the points to the homogeneous format
num_points = points.shape[0]
# points = points.astype(np.float32)[:, ::-1]
points = np.concatenate([points, np.ones([num_points, 1], dtype=np.float32)], -1)
H_inv = np.transpose(np.linalg.inv(H) if inverse else H)
warped_points = np.tensordot(points, H_inv, axes=[[1], [0]])
warped_points = np.transpose(warped_points, [2, 0, 1])
warped_points[np.abs(warped_points[:, :, 2]) < 1e-8, 2] = 1e-8
warped_points = warped_points[:, :, :2] / warped_points[:, :, 2:]
return warped_points[0] if len(homography.shape) == 2 else warped_points
def warp_points_torch(points, H, inverse=True):
"""
Warp a list of points with the INVERSE of the given homography.
The inverse is used to be coherent with tf.contrib.image.transform
Arguments:
points: batched list of N points, shape (B, N, 2).
H: batched or not (shapes (B, 3, 3) and (3, 3) respectively).
inverse: Whether to multiply the points by H or the inverse of H
Returns: a Tensor of shape (B, N, 2) containing the new coordinates of the warps.
"""
# Get the points to the homogeneous format
points = to_homogeneous(points)
# Apply the homography
H_mat = (torch.inverse(H) if inverse else H).transpose(-2, -1)
warped_points = torch.einsum("...nj,...ji->...ni", points, H_mat)
warped_points = from_homogeneous(warped_points, eps=1e-5)
return warped_points
# Line warping utils
def seg_equation(segs):
# calculate list of start, end and midpoints points from both lists
start_points, end_points = to_homogeneous(segs[..., 0, :]), to_homogeneous(
segs[..., 1, :]
)
# Compute the line equations as ax + by + c = 0 , where x^2 + y^2 = 1
lines = torch.cross(start_points, end_points, dim=-1)
lines_norm = torch.sqrt(lines[..., 0] ** 2 + lines[..., 1] ** 2)[..., None]
assert torch.all(
lines_norm > 0
), "Error: trying to compute the equation of a line with a single point"
lines = lines / lines_norm
return lines
def is_inside_img(pts: torch.Tensor, img_shape: Tuple[int, int]):
h, w = img_shape
return (
(pts >= 0).all(dim=-1)
& (pts[..., 0] < w)
& (pts[..., 1] < h)
& (~torch.isinf(pts).any(dim=-1))
)
def shrink_segs_to_img(segs: torch.Tensor, img_shape: Tuple[int, int]) -> torch.Tensor:
"""
Shrink an array of segments to fit inside the image.
:param segs: The tensor of segments with shape (N, 2, 2)
:param img_shape: The image shape in format (H, W)
"""
EPS = 1e-4
device = segs.device
w, h = img_shape[1], img_shape[0]
# Project the segments to the reference image
segs = segs.clone()
eqs = seg_equation(segs)
x0, y0 = torch.tensor([1.0, 0, 0.0], device=device), torch.tensor(
[0.0, 1, 0], device=device
)
x0 = x0.repeat(eqs.shape[:-1] + (1,))
y0 = y0.repeat(eqs.shape[:-1] + (1,))
pt_x0s = torch.cross(eqs, x0, dim=-1)
pt_x0s = pt_x0s[..., :-1] / pt_x0s[..., None, -1]
pt_x0s_valid = is_inside_img(pt_x0s, img_shape)
pt_y0s = torch.cross(eqs, y0, dim=-1)
pt_y0s = pt_y0s[..., :-1] / pt_y0s[..., None, -1]
pt_y0s_valid = is_inside_img(pt_y0s, img_shape)
xW = torch.tensor([1.0, 0, EPS - w], device=device)
yH = torch.tensor([0.0, 1, EPS - h], device=device)
xW = xW.repeat(eqs.shape[:-1] + (1,))
yH = yH.repeat(eqs.shape[:-1] + (1,))
pt_xWs = torch.cross(eqs, xW, dim=-1)
pt_xWs = pt_xWs[..., :-1] / pt_xWs[..., None, -1]
pt_xWs_valid = is_inside_img(pt_xWs, img_shape)
pt_yHs = torch.cross(eqs, yH, dim=-1)
pt_yHs = pt_yHs[..., :-1] / pt_yHs[..., None, -1]
pt_yHs_valid = is_inside_img(pt_yHs, img_shape)
# If the X coordinate of the first endpoint is out
mask = (segs[..., 0, 0] < 0) & pt_x0s_valid
segs[mask, 0, :] = pt_x0s[mask]
mask = (segs[..., 0, 0] > (w - 1)) & pt_xWs_valid
segs[mask, 0, :] = pt_xWs[mask]
# If the X coordinate of the second endpoint is out
mask = (segs[..., 1, 0] < 0) & pt_x0s_valid
segs[mask, 1, :] = pt_x0s[mask]
mask = (segs[:, 1, 0] > (w - 1)) & pt_xWs_valid
segs[mask, 1, :] = pt_xWs[mask]
# If the Y coordinate of the first endpoint is out
mask = (segs[..., 0, 1] < 0) & pt_y0s_valid
segs[mask, 0, :] = pt_y0s[mask]
mask = (segs[..., 0, 1] > (h - 1)) & pt_yHs_valid
segs[mask, 0, :] = pt_yHs[mask]
# If the Y coordinate of the second endpoint is out
mask = (segs[..., 1, 1] < 0) & pt_y0s_valid
segs[mask, 1, :] = pt_y0s[mask]
mask = (segs[..., 1, 1] > (h - 1)) & pt_yHs_valid
segs[mask, 1, :] = pt_yHs[mask]
assert (
torch.all(segs >= 0)
and torch.all(segs[..., 0] < w)
and torch.all(segs[..., 1] < h)
)
return segs
def warp_lines_torch(
lines, H, inverse=True, dst_shape: Tuple[int, int] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
:param lines: A tensor of shape (B, N, 2, 2)
where B is the batch size, N the number of lines.
:param H: The homography used to convert the lines.
batched or not (shapes (B, 3, 3) and (3, 3) respectively).
:param inverse: Whether to apply H or the inverse of H
:param dst_shape:If provided, lines are trimmed to be inside the image
"""
device = lines.device
batch_size = len(lines)
lines = warp_points_torch(lines.reshape(batch_size, -1, 2), H, inverse).reshape(
lines.shape
)
if dst_shape is None:
return lines, torch.ones(lines.shape[:-2], dtype=torch.bool, device=device)
out_img = torch.any(
(lines < 0) | (lines >= torch.tensor(dst_shape[::-1], device=device)), -1
)
valid = ~out_img.all(-1)
any_out_of_img = out_img.any(-1)
lines_to_trim = valid & any_out_of_img
for b in range(batch_size):
lines_to_trim_mask_b = lines_to_trim[b]
lines_to_trim_b = lines[b][lines_to_trim_mask_b]
corrected_lines = shrink_segs_to_img(lines_to_trim_b, dst_shape)
lines[b][lines_to_trim_mask_b] = corrected_lines
return lines, valid
# Homography evaluation utils
def sym_homography_error(kpts0, kpts1, T_0to1):
kpts0_1 = from_homogeneous(to_homogeneous(kpts0) @ T_0to1.transpose(-1, -2))
dist0_1 = ((kpts0_1 - kpts1) ** 2).sum(-1).sqrt()
kpts1_0 = from_homogeneous(
to_homogeneous(kpts1) @ torch.pinverse(T_0to1.transpose(-1, -2))
)
dist1_0 = ((kpts1_0 - kpts0) ** 2).sum(-1).sqrt()
return (dist0_1 + dist1_0) / 2.0
def sym_homography_error_all(kpts0, kpts1, H):
kp0_1 = warp_points_torch(kpts0, H, inverse=False)
kp1_0 = warp_points_torch(kpts1, H, inverse=True)
# build a distance matrix of size [... x M x N]
dist0 = torch.sum((kp0_1.unsqueeze(-2) - kpts1.unsqueeze(-3)) ** 2, -1).sqrt()
dist1 = torch.sum((kpts0.unsqueeze(-2) - kp1_0.unsqueeze(-3)) ** 2, -1).sqrt()
return (dist0 + dist1) / 2.0
def homography_corner_error(T, T_gt, image_size):
W, H = image_size[..., 0], image_size[..., 1]
corners0 = torch.Tensor([[0, 0], [W, 0], [W, H], [0, H]]).float().to(T)
corners1_gt = from_homogeneous(to_homogeneous(corners0) @ T_gt.transpose(-1, -2))
corners1 = from_homogeneous(to_homogeneous(corners0) @ T.transpose(-1, -2))
d = torch.sqrt(((corners1 - corners1_gt) ** 2).sum(-1))
return d.mean(-1)