Spaces:
Running
Running
# %BANNER_BEGIN% | |
# --------------------------------------------------------------------- | |
# %COPYRIGHT_BEGIN% | |
# | |
# Magic Leap, Inc. ("COMPANY") CONFIDENTIAL | |
# | |
# Unpublished Copyright (c) 2020 | |
# Magic Leap, Inc., All Rights Reserved. | |
# | |
# NOTICE: All information contained herein is, and remains the property | |
# of COMPANY. The intellectual and technical concepts contained herein | |
# are proprietary to COMPANY and may be covered by U.S. and Foreign | |
# Patents, patents in process, and are protected by trade secret or | |
# copyright law. Dissemination of this information or reproduction of | |
# this material is strictly forbidden unless prior written permission is | |
# obtained from COMPANY. Access to the source code contained herein is | |
# hereby forbidden to anyone except current COMPANY employees, managers | |
# or contractors who have executed Confidentiality and Non-disclosure | |
# agreements explicitly covering such access. | |
# | |
# The copyright notice above does not evidence any actual or intended | |
# publication or disclosure of this source code, which includes | |
# information that is confidential and/or proprietary, and is a trade | |
# secret, of COMPANY. ANY REPRODUCTION, MODIFICATION, DISTRIBUTION, | |
# PUBLIC PERFORMANCE, OR PUBLIC DISPLAY OF OR THROUGH USE OF THIS | |
# SOURCE CODE WITHOUT THE EXPRESS WRITTEN CONSENT OF COMPANY IS | |
# STRICTLY PROHIBITED, AND IN VIOLATION OF APPLICABLE LAWS AND | |
# INTERNATIONAL TREATIES. THE RECEIPT OR POSSESSION OF THIS SOURCE | |
# CODE AND/OR RELATED INFORMATION DOES NOT CONVEY OR IMPLY ANY RIGHTS | |
# TO REPRODUCE, DISCLOSE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE, | |
# USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN PART. | |
# | |
# %COPYRIGHT_END% | |
# ---------------------------------------------------------------------- | |
# %AUTHORS_BEGIN% | |
# | |
# Originating Authors: Paul-Edouard Sarlin | |
# | |
# %AUTHORS_END% | |
# --------------------------------------------------------------------*/ | |
# %BANNER_END% | |
from copy import deepcopy | |
from pathlib import Path | |
from typing import List, Tuple | |
import torch | |
from torch import nn | |
def MLP(channels: List[int], do_bn: bool = True) -> nn.Module: | |
""" Multi-layer perceptron """ | |
n = len(channels) | |
layers = [] | |
for i in range(1, n): | |
layers.append( | |
nn.Conv1d(channels[i - 1], channels[i], kernel_size=1, bias=True)) | |
if i < (n-1): | |
if do_bn: | |
layers.append(nn.BatchNorm1d(channels[i])) | |
layers.append(nn.ReLU()) | |
return nn.Sequential(*layers) | |
def normalize_keypoints(kpts, image_shape): | |
""" Normalize keypoints locations based on image image_shape""" | |
_, _, height, width = image_shape | |
one = kpts.new_tensor(1) | |
size = torch.stack([one*width, one*height])[None] | |
center = size / 2 | |
scaling = size.max(1, keepdim=True).values * 0.7 | |
return (kpts - center[:, None, :]) / scaling[:, None, :] | |
class KeypointEncoder(nn.Module): | |
""" Joint encoding of visual appearance and location using MLPs""" | |
def __init__(self, feature_dim: int, layers: List[int]) -> None: | |
super().__init__() | |
self.encoder = MLP([3] + layers + [feature_dim]) | |
nn.init.constant_(self.encoder[-1].bias, 0.0) | |
def forward(self, kpts, scores): | |
inputs = [kpts.transpose(1, 2), scores.unsqueeze(1)] | |
return self.encoder(torch.cat(inputs, dim=1)) | |
def attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor) -> Tuple[torch.Tensor,torch.Tensor]: | |
dim = query.shape[1] | |
scores = torch.einsum('bdhn,bdhm->bhnm', query, key) / dim**.5 | |
prob = torch.nn.functional.softmax(scores, dim=-1) | |
return torch.einsum('bhnm,bdhm->bdhn', prob, value), prob | |
class MultiHeadedAttention(nn.Module): | |
""" Multi-head attention to increase model expressivitiy """ | |
def __init__(self, num_heads: int, d_model: int): | |
super().__init__() | |
assert d_model % num_heads == 0 | |
self.dim = d_model // num_heads | |
self.num_heads = num_heads | |
self.merge = nn.Conv1d(d_model, d_model, kernel_size=1) | |
self.proj = nn.ModuleList([deepcopy(self.merge) for _ in range(3)]) | |
def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor) -> torch.Tensor: | |
batch_dim = query.size(0) | |
query, key, value = [l(x).view(batch_dim, self.dim, self.num_heads, -1) | |
for l, x in zip(self.proj, (query, key, value))] | |
x, _ = attention(query, key, value) | |
return self.merge(x.contiguous().view(batch_dim, self.dim*self.num_heads, -1)) | |
class AttentionalPropagation(nn.Module): | |
def __init__(self, feature_dim: int, num_heads: int): | |
super().__init__() | |
self.attn = MultiHeadedAttention(num_heads, feature_dim) | |
self.mlp = MLP([feature_dim*2, feature_dim*2, feature_dim]) | |
nn.init.constant_(self.mlp[-1].bias, 0.0) | |
def forward(self, x: torch.Tensor, source: torch.Tensor) -> torch.Tensor: | |
message = self.attn(x, source, source) | |
return self.mlp(torch.cat([x, message], dim=1)) | |
class AttentionalGNN(nn.Module): | |
def __init__(self, feature_dim: int, layer_names: List[str]) -> None: | |
super().__init__() | |
self.layers = nn.ModuleList([ | |
AttentionalPropagation(feature_dim, 4) | |
for _ in range(len(layer_names))]) | |
self.names = layer_names | |
def forward(self, desc0: torch.Tensor, desc1: torch.Tensor) -> Tuple[torch.Tensor,torch.Tensor]: | |
for layer, name in zip(self.layers, self.names): | |
if name == 'cross': | |
src0, src1 = desc1, desc0 | |
else: # if name == 'self': | |
src0, src1 = desc0, desc1 | |
delta0, delta1 = layer(desc0, src0), layer(desc1, src1) | |
desc0, desc1 = (desc0 + delta0), (desc1 + delta1) | |
return desc0, desc1 | |
def log_sinkhorn_iterations(Z: torch.Tensor, log_mu: torch.Tensor, log_nu: torch.Tensor, iters: int) -> torch.Tensor: | |
""" Perform Sinkhorn Normalization in Log-space for stability""" | |
u, v = torch.zeros_like(log_mu), torch.zeros_like(log_nu) | |
for _ in range(iters): | |
u = log_mu - torch.logsumexp(Z + v.unsqueeze(1), dim=2) | |
v = log_nu - torch.logsumexp(Z + u.unsqueeze(2), dim=1) | |
return Z + u.unsqueeze(2) + v.unsqueeze(1) | |
def log_optimal_transport(scores: torch.Tensor, alpha: torch.Tensor, iters: int) -> torch.Tensor: | |
""" Perform Differentiable Optimal Transport in Log-space for stability""" | |
b, m, n = scores.shape | |
one = scores.new_tensor(1) | |
ms, ns = (m*one).to(scores), (n*one).to(scores) | |
bins0 = alpha.expand(b, m, 1) | |
bins1 = alpha.expand(b, 1, n) | |
alpha = alpha.expand(b, 1, 1) | |
couplings = torch.cat([torch.cat([scores, bins0], -1), | |
torch.cat([bins1, alpha], -1)], 1) | |
norm = - (ms + ns).log() | |
log_mu = torch.cat([norm.expand(m), ns.log()[None] + norm]) | |
log_nu = torch.cat([norm.expand(n), ms.log()[None] + norm]) | |
log_mu, log_nu = log_mu[None].expand(b, -1), log_nu[None].expand(b, -1) | |
Z = log_sinkhorn_iterations(couplings, log_mu, log_nu, iters) | |
Z = Z - norm # multiply probabilities by M+N | |
return Z | |
def arange_like(x, dim: int): | |
return x.new_ones(x.shape[dim]).cumsum(0) - 1 # traceable in 1.1 | |
class SuperGlue(nn.Module): | |
"""SuperGlue feature matching middle-end | |
Given two sets of keypoints and locations, we determine the | |
correspondences by: | |
1. Keypoint Encoding (normalization + visual feature and location fusion) | |
2. Graph Neural Network with multiple self and cross-attention layers | |
3. Final projection layer | |
4. Optimal Transport Layer (a differentiable Hungarian matching algorithm) | |
5. Thresholding matrix based on mutual exclusivity and a match_threshold | |
The correspondence ids use -1 to indicate non-matching points. | |
Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew | |
Rabinovich. SuperGlue: Learning Feature Matching with Graph Neural | |
Networks. In CVPR, 2020. https://arxiv.org/abs/1911.11763 | |
""" | |
default_config = { | |
'descriptor_dim': 256, | |
'weights': 'indoor', | |
'keypoint_encoder': [32, 64, 128, 256], | |
'GNN_layers': ['self', 'cross'] * 9, | |
'sinkhorn_iterations': 100, | |
'match_threshold': 0.2, | |
} | |
def __init__(self, config): | |
super().__init__() | |
self.config = {**self.default_config, **config} | |
self.kenc = KeypointEncoder( | |
self.config['descriptor_dim'], self.config['keypoint_encoder']) | |
self.gnn = AttentionalGNN( | |
feature_dim=self.config['descriptor_dim'], layer_names=self.config['GNN_layers']) | |
self.final_proj = nn.Conv1d( | |
self.config['descriptor_dim'], self.config['descriptor_dim'], | |
kernel_size=1, bias=True) | |
bin_score = torch.nn.Parameter(torch.tensor(1.)) | |
self.register_parameter('bin_score', bin_score) | |
assert self.config['weights'] in ['indoor', 'outdoor'] | |
path = Path(__file__).parent | |
path = path / 'weights/superglue_{}.pth'.format(self.config['weights']) | |
self.load_state_dict(torch.load(str(path))) | |
print('Loaded SuperGlue model (\"{}\" weights)'.format( | |
self.config['weights'])) | |
def forward(self, data): | |
"""Run SuperGlue on a pair of keypoints and descriptors""" | |
desc0, desc1 = data['descriptors0'], data['descriptors1'] | |
kpts0, kpts1 = data['keypoints0'], data['keypoints1'] | |
if kpts0.shape[1] == 0 or kpts1.shape[1] == 0: # no keypoints | |
shape0, shape1 = kpts0.shape[:-1], kpts1.shape[:-1] | |
return { | |
'matches0': kpts0.new_full(shape0, -1, dtype=torch.int), | |
'matches1': kpts1.new_full(shape1, -1, dtype=torch.int), | |
'matching_scores0': kpts0.new_zeros(shape0), | |
'matching_scores1': kpts1.new_zeros(shape1), | |
} | |
# Keypoint normalization. | |
kpts0 = normalize_keypoints(kpts0, data['image0'].shape) | |
kpts1 = normalize_keypoints(kpts1, data['image1'].shape) | |
# Keypoint MLP encoder. | |
desc0 = desc0 + self.kenc(kpts0, data['scores0']) | |
desc1 = desc1 + self.kenc(kpts1, data['scores1']) | |
# Multi-layer Transformer network. | |
desc0, desc1 = self.gnn(desc0, desc1) | |
# Final MLP projection. | |
mdesc0, mdesc1 = self.final_proj(desc0), self.final_proj(desc1) | |
# Compute matching descriptor distance. | |
scores = torch.einsum('bdn,bdm->bnm', mdesc0, mdesc1) | |
scores = scores / self.config['descriptor_dim']**.5 | |
# Run the optimal transport. | |
scores = log_optimal_transport( | |
scores, self.bin_score, | |
iters=self.config['sinkhorn_iterations']) | |
# Get the matches with score above "match_threshold". | |
max0, max1 = scores[:, :-1, :-1].max(2), scores[:, :-1, :-1].max(1) | |
indices0, indices1 = max0.indices, max1.indices | |
mutual0 = arange_like(indices0, 1)[None] == indices1.gather(1, indices0) | |
mutual1 = arange_like(indices1, 1)[None] == indices0.gather(1, indices1) | |
zero = scores.new_tensor(0) | |
mscores0 = torch.where(mutual0, max0.values.exp(), zero) | |
mscores1 = torch.where(mutual1, mscores0.gather(1, indices1), zero) | |
valid0 = mutual0 & (mscores0 > self.config['match_threshold']) | |
valid1 = mutual1 & valid0.gather(1, indices1) | |
indices0 = torch.where(valid0, indices0, indices0.new_tensor(-1)) | |
indices1 = torch.where(valid1, indices1, indices1.new_tensor(-1)) | |
return { | |
'matches0': indices0, # use -1 for invalid match | |
'matches1': indices1, # use -1 for invalid match | |
'matching_scores0': mscores0, | |
'matching_scores1': mscores1, | |
} | |