Spaces:
Running
Running
# %BANNER_BEGIN% | |
# --------------------------------------------------------------------- | |
# %COPYRIGHT_BEGIN% | |
# | |
# Magic Leap, Inc. ("COMPANY") CONFIDENTIAL | |
# | |
# Unpublished Copyright (c) 2020 | |
# Magic Leap, Inc., All Rights Reserved. | |
# | |
# NOTICE: All information contained herein is, and remains the property | |
# of COMPANY. The intellectual and technical concepts contained herein | |
# are proprietary to COMPANY and may be covered by U.S. and Foreign | |
# Patents, patents in process, and are protected by trade secret or | |
# copyright law. Dissemination of this information or reproduction of | |
# this material is strictly forbidden unless prior written permission is | |
# obtained from COMPANY. Access to the source code contained herein is | |
# hereby forbidden to anyone except current COMPANY employees, managers | |
# or contractors who have executed Confidentiality and Non-disclosure | |
# agreements explicitly covering such access. | |
# | |
# The copyright notice above does not evidence any actual or intended | |
# publication or disclosure of this source code, which includes | |
# information that is confidential and/or proprietary, and is a trade | |
# secret, of COMPANY. ANY REPRODUCTION, MODIFICATION, DISTRIBUTION, | |
# PUBLIC PERFORMANCE, OR PUBLIC DISPLAY OF OR THROUGH USE OF THIS | |
# SOURCE CODE WITHOUT THE EXPRESS WRITTEN CONSENT OF COMPANY IS | |
# STRICTLY PROHIBITED, AND IN VIOLATION OF APPLICABLE LAWS AND | |
# INTERNATIONAL TREATIES. THE RECEIPT OR POSSESSION OF THIS SOURCE | |
# CODE AND/OR RELATED INFORMATION DOES NOT CONVEY OR IMPLY ANY RIGHTS | |
# TO REPRODUCE, DISCLOSE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE, | |
# USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN PART. | |
# | |
# %COPYRIGHT_END% | |
# ---------------------------------------------------------------------- | |
# %AUTHORS_BEGIN% | |
# | |
# Originating Authors: Paul-Edouard Sarlin | |
# | |
# %AUTHORS_END% | |
# --------------------------------------------------------------------*/ | |
# %BANNER_END% | |
from pathlib import Path | |
import torch | |
from torch import nn | |
def simple_nms(scores, nms_radius: int): | |
""" Fast Non-maximum suppression to remove nearby points """ | |
assert(nms_radius >= 0) | |
def max_pool(x): | |
return torch.nn.functional.max_pool2d( | |
x, kernel_size=nms_radius*2+1, stride=1, padding=nms_radius) | |
zeros = torch.zeros_like(scores) | |
max_mask = scores == max_pool(scores) | |
for _ in range(2): | |
supp_mask = max_pool(max_mask.float()) > 0 | |
supp_scores = torch.where(supp_mask, zeros, scores) | |
new_max_mask = supp_scores == max_pool(supp_scores) | |
max_mask = max_mask | (new_max_mask & (~supp_mask)) | |
return torch.where(max_mask, scores, zeros) | |
def remove_borders(keypoints, scores, border: int, height: int, width: int): | |
""" Removes keypoints too close to the border """ | |
mask_h = (keypoints[:, 0] >= border) & (keypoints[:, 0] < (height - border)) | |
mask_w = (keypoints[:, 1] >= border) & (keypoints[:, 1] < (width - border)) | |
mask = mask_h & mask_w | |
return keypoints[mask], scores[mask] | |
def top_k_keypoints(keypoints, scores, k: int): | |
if k >= len(keypoints): | |
return keypoints, scores | |
scores, indices = torch.topk(scores, k, dim=0) | |
return keypoints[indices], scores | |
def sample_descriptors(keypoints, descriptors, s: int = 8): | |
""" Interpolate descriptors at keypoint locations """ | |
b, c, h, w = descriptors.shape | |
keypoints = keypoints - s / 2 + 0.5 | |
keypoints /= torch.tensor([(w*s - s/2 - 0.5), (h*s - s/2 - 0.5)], | |
).to(keypoints)[None] | |
keypoints = keypoints*2 - 1 # normalize to (-1, 1) | |
args = {'align_corners': True} if torch.__version__ >= '1.3' else {} | |
descriptors = torch.nn.functional.grid_sample( | |
descriptors, keypoints.view(b, 1, -1, 2), mode='bilinear', **args) | |
descriptors = torch.nn.functional.normalize( | |
descriptors.reshape(b, c, -1), p=2, dim=1) | |
return descriptors | |
class SuperPoint(nn.Module): | |
"""SuperPoint Convolutional Detector and Descriptor | |
SuperPoint: Self-Supervised Interest Point Detection and | |
Description. Daniel DeTone, Tomasz Malisiewicz, and Andrew | |
Rabinovich. In CVPRW, 2019. https://arxiv.org/abs/1712.07629 | |
""" | |
default_config = { | |
'descriptor_dim': 256, | |
'nms_radius': 4, | |
'keypoint_threshold': 0.005, | |
'max_keypoints': -1, | |
'remove_borders': 4, | |
} | |
def __init__(self, config): | |
super().__init__() | |
self.config = {**self.default_config, **config} | |
self.relu = nn.ReLU(inplace=True) | |
self.pool = nn.MaxPool2d(kernel_size=2, stride=2) | |
c1, c2, c3, c4, c5 = 64, 64, 128, 128, 256 | |
self.conv1a = nn.Conv2d(1, c1, kernel_size=3, stride=1, padding=1) | |
self.conv1b = nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1) | |
self.conv2a = nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1) | |
self.conv2b = nn.Conv2d(c2, c2, kernel_size=3, stride=1, padding=1) | |
self.conv3a = nn.Conv2d(c2, c3, kernel_size=3, stride=1, padding=1) | |
self.conv3b = nn.Conv2d(c3, c3, kernel_size=3, stride=1, padding=1) | |
self.conv4a = nn.Conv2d(c3, c4, kernel_size=3, stride=1, padding=1) | |
self.conv4b = nn.Conv2d(c4, c4, kernel_size=3, stride=1, padding=1) | |
self.convPa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1) | |
self.convPb = nn.Conv2d(c5, 65, kernel_size=1, stride=1, padding=0) | |
self.convDa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1) | |
self.convDb = nn.Conv2d( | |
c5, self.config['descriptor_dim'], | |
kernel_size=1, stride=1, padding=0) | |
path = Path(__file__).parent / 'weights/superpoint_v1.pth' | |
self.load_state_dict(torch.load(str(path))) | |
mk = self.config['max_keypoints'] | |
if mk == 0 or mk < -1: | |
raise ValueError('\"max_keypoints\" must be positive or \"-1\"') | |
print('Loaded SuperPoint model') | |
def forward(self, data): | |
""" Compute keypoints, scores, descriptors for image """ | |
# Shared Encoder | |
x = self.relu(self.conv1a(data['image'])) | |
x = self.relu(self.conv1b(x)) | |
x = self.pool(x) | |
x = self.relu(self.conv2a(x)) | |
x = self.relu(self.conv2b(x)) | |
x = self.pool(x) | |
x = self.relu(self.conv3a(x)) | |
x = self.relu(self.conv3b(x)) | |
x = self.pool(x) | |
x = self.relu(self.conv4a(x)) | |
x = self.relu(self.conv4b(x)) | |
# Compute the dense keypoint scores | |
cPa = self.relu(self.convPa(x)) | |
scores = self.convPb(cPa) | |
scores = torch.nn.functional.softmax(scores, 1)[:, :-1] | |
b, _, h, w = scores.shape | |
scores = scores.permute(0, 2, 3, 1).reshape(b, h, w, 8, 8) | |
scores = scores.permute(0, 1, 3, 2, 4).reshape(b, h*8, w*8) | |
scores = simple_nms(scores, self.config['nms_radius']) | |
# Extract keypoints | |
keypoints = [ | |
torch.nonzero(s > self.config['keypoint_threshold']) | |
for s in scores] | |
scores = [s[tuple(k.t())] for s, k in zip(scores, keypoints)] | |
# Discard keypoints near the image borders | |
keypoints, scores = list(zip(*[ | |
remove_borders(k, s, self.config['remove_borders'], h*8, w*8) | |
for k, s in zip(keypoints, scores)])) | |
# Keep the k keypoints with highest score | |
if self.config['max_keypoints'] >= 0: | |
keypoints, scores = list(zip(*[ | |
top_k_keypoints(k, s, self.config['max_keypoints']) | |
for k, s in zip(keypoints, scores)])) | |
# Convert (h, w) to (x, y) | |
keypoints = [torch.flip(k, [1]).float() for k in keypoints] | |
# Compute the dense descriptors | |
cDa = self.relu(self.convDa(x)) | |
descriptors = self.convDb(cDa) | |
descriptors = torch.nn.functional.normalize(descriptors, p=2, dim=1) | |
# Extract descriptors | |
descriptors = [sample_descriptors(k[None], d[None], 8)[0] | |
for k, d in zip(keypoints, descriptors)] | |
return { | |
'keypoints': keypoints, | |
'scores': scores, | |
'descriptors': descriptors, | |
} | |