Realcat
add: GIM (https://github.com/xuelunshen/gim)
4dfb78b
raw
history blame
27.4 kB
"""
A generic training script that works with any model and dataset.
Author: Paul-Edouard Sarlin (skydes)
"""
import argparse
import copy
import re
import shutil
import signal
from collections import defaultdict
from pathlib import Path
from pydoc import locate
import numpy as np
import torch
from omegaconf import OmegaConf
from torch.cuda.amp import GradScaler, autocast
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from . import __module_name__, logger
from .datasets import get_dataset
from .eval import run_benchmark
from .models import get_model
from .settings import EVAL_PATH, TRAINING_PATH
from .utils.experiments import get_best_checkpoint, get_last_checkpoint, save_experiment
from .utils.stdout_capturing import capture_outputs
from .utils.tensor import batch_to_device
from .utils.tools import (
AverageMetric,
MedianMetric,
PRMetric,
RecallMetric,
fork_rng,
set_seed,
)
# @TODO: Fix pbar pollution in logs
# @TODO: add plotting during evaluation
default_train_conf = {
"seed": "???", # training seed
"epochs": 1, # number of epochs
"optimizer": "adam", # name of optimizer in [adam, sgd, rmsprop]
"opt_regexp": None, # regular expression to filter parameters to optimize
"optimizer_options": {}, # optional arguments passed to the optimizer
"lr": 0.001, # learning rate
"lr_schedule": {
"type": None, # string in {factor, exp, member of torch.optim.lr_scheduler}
"start": 0,
"exp_div_10": 0,
"on_epoch": False,
"factor": 1.0,
"options": {}, # add lr_scheduler arguments here
},
"lr_scaling": [(100, ["dampingnet.const"])],
"eval_every_iter": 1000, # interval for evaluation on the validation set
"save_every_iter": 5000, # interval for saving the current checkpoint
"log_every_iter": 200, # interval for logging the loss to the console
"log_grad_every_iter": None, # interval for logging gradient hists
"test_every_epoch": 1, # interval for evaluation on the test benchmarks
"keep_last_checkpoints": 10, # keep only the last X checkpoints
"load_experiment": None, # initialize the model from a previous experiment
"median_metrics": [], # add the median of some metrics
"recall_metrics": {}, # add the recall of some metrics
"pr_metrics": {}, # add pr curves, set labels/predictions/mask keys
"best_key": "loss/total", # key to use to select the best checkpoint
"dataset_callback_fn": None, # data func called at the start of each epoch
"dataset_callback_on_val": False, # call data func on val data?
"clip_grad": None,
"pr_curves": {},
"plot": None,
"submodules": [],
}
default_train_conf = OmegaConf.create(default_train_conf)
@torch.no_grad()
def do_evaluation(model, loader, device, loss_fn, conf, pbar=True):
model.eval()
results = {}
pr_metrics = defaultdict(PRMetric)
figures = []
if conf.plot is not None:
n, plot_fn = conf.plot
plot_ids = np.random.choice(len(loader), min(len(loader), n), replace=False)
for i, data in enumerate(
tqdm(loader, desc="Evaluation", ascii=True, disable=not pbar)
):
data = batch_to_device(data, device, non_blocking=True)
with torch.no_grad():
pred = model(data)
losses, metrics = loss_fn(pred, data)
if conf.plot is not None and i in plot_ids:
figures.append(locate(plot_fn)(pred, data))
# add PR curves
for k, v in conf.pr_curves.items():
pr_metrics[k].update(
pred[v["labels"]],
pred[v["predictions"]],
mask=pred[v["mask"]] if "mask" in v.keys() else None,
)
del pred, data
numbers = {**metrics, **{"loss/" + k: v for k, v in losses.items()}}
for k, v in numbers.items():
if k not in results:
results[k] = AverageMetric()
if k in conf.median_metrics:
results[k + "_median"] = MedianMetric()
if k in conf.recall_metrics.keys():
q = conf.recall_metrics[k]
results[k + f"_recall{int(q)}"] = RecallMetric(q)
results[k].update(v)
if k in conf.median_metrics:
results[k + "_median"].update(v)
if k in conf.recall_metrics.keys():
q = conf.recall_metrics[k]
results[k + f"_recall{int(q)}"].update(v)
del numbers
results = {k: results[k].compute() for k in results}
return results, {k: v.compute() for k, v in pr_metrics.items()}, figures
def filter_parameters(params, regexp):
"""Filter trainable parameters based on regular expressions."""
# Examples of regexp:
# '.*(weight|bias)$'
# 'cnn\.(enc0|enc1).*bias'
def filter_fn(x):
n, p = x
match = re.search(regexp, n)
if not match:
p.requires_grad = False
return match
params = list(filter(filter_fn, params))
assert len(params) > 0, regexp
logger.info("Selected parameters:\n" + "\n".join(n for n, p in params))
return params
def get_lr_scheduler(optimizer, conf):
"""Get lr scheduler specified by conf.train.lr_schedule."""
if conf.type not in ["factor", "exp", None]:
return getattr(torch.optim.lr_scheduler, conf.type)(optimizer, **conf.options)
# backward compatibility
def lr_fn(it): # noqa: E306
if conf.type is None:
return 1
if conf.type == "factor":
return 1.0 if it < conf.start else conf.factor
if conf.type == "exp":
gam = 10 ** (-1 / conf.exp_div_10)
return 1.0 if it < conf.start else gam
else:
raise ValueError(conf.type)
return torch.optim.lr_scheduler.MultiplicativeLR(optimizer, lr_fn)
def pack_lr_parameters(params, base_lr, lr_scaling):
"""Pack each group of parameters with the respective scaled learning rate."""
filters, scales = tuple(zip(*[(n, s) for s, names in lr_scaling for n in names]))
scale2params = defaultdict(list)
for n, p in params:
scale = 1
# TODO: use proper regexp rather than just this inclusion check
is_match = [f in n for f in filters]
if any(is_match):
scale = scales[is_match.index(True)]
scale2params[scale].append((n, p))
logger.info(
"Parameters with scaled learning rate:\n%s",
{s: [n for n, _ in ps] for s, ps in scale2params.items() if s != 1},
)
lr_params = [
{"lr": scale * base_lr, "params": [p for _, p in ps]}
for scale, ps in scale2params.items()
]
return lr_params
def training(rank, conf, output_dir, args):
if args.restore:
logger.info(f"Restoring from previous training of {args.experiment}")
try:
init_cp = get_last_checkpoint(args.experiment, allow_interrupted=False)
except AssertionError:
init_cp = get_best_checkpoint(args.experiment)
logger.info(f"Restoring from checkpoint {init_cp.name}")
init_cp = torch.load(str(init_cp), map_location="cpu")
conf = OmegaConf.merge(OmegaConf.create(init_cp["conf"]), conf)
conf.train = OmegaConf.merge(default_train_conf, conf.train)
epoch = init_cp["epoch"] + 1
# get the best loss or eval metric from the previous best checkpoint
best_cp = get_best_checkpoint(args.experiment)
best_cp = torch.load(str(best_cp), map_location="cpu")
best_eval = best_cp["eval"][conf.train.best_key]
del best_cp
else:
# we start a new, fresh training
conf.train = OmegaConf.merge(default_train_conf, conf.train)
epoch = 0
best_eval = float("inf")
if conf.train.load_experiment:
logger.info(f"Will fine-tune from weights of {conf.train.load_experiment}")
# the user has to make sure that the weights are compatible
try:
init_cp = get_last_checkpoint(conf.train.load_experiment)
except AssertionError:
init_cp = get_best_checkpoint(conf.train.load_experiment)
# init_cp = get_last_checkpoint(conf.train.load_experiment)
init_cp = torch.load(str(init_cp), map_location="cpu")
# load the model config of the old setup, and overwrite with current config
conf.model = OmegaConf.merge(
OmegaConf.create(init_cp["conf"]).model, conf.model
)
print(conf.model)
else:
init_cp = None
OmegaConf.set_struct(conf, True) # prevent access to unknown entries
set_seed(conf.train.seed)
if rank == 0:
writer = SummaryWriter(log_dir=str(output_dir))
data_conf = copy.deepcopy(conf.data)
if args.distributed:
logger.info(f"Training in distributed mode with {args.n_gpus} GPUs")
assert torch.cuda.is_available()
device = rank
torch.distributed.init_process_group(
backend="nccl",
world_size=args.n_gpus,
rank=device,
init_method="file://" + str(args.lock_file),
)
torch.cuda.set_device(device)
# adjust batch size and num of workers since these are per GPU
if "batch_size" in data_conf:
data_conf.batch_size = int(data_conf.batch_size / args.n_gpus)
if "train_batch_size" in data_conf:
data_conf.train_batch_size = int(data_conf.train_batch_size / args.n_gpus)
if "num_workers" in data_conf:
data_conf.num_workers = int(
(data_conf.num_workers + args.n_gpus - 1) / args.n_gpus
)
else:
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device {device}")
dataset = get_dataset(data_conf.name)(data_conf)
# Optionally load a different validation dataset than the training one
val_data_conf = conf.get("data_val", None)
if val_data_conf is None:
val_dataset = dataset
else:
val_dataset = get_dataset(val_data_conf.name)(val_data_conf)
# @TODO: add test data loader
if args.overfit:
# we train and eval with the same single training batch
logger.info("Data in overfitting mode")
assert not args.distributed
train_loader = dataset.get_overfit_loader("train")
val_loader = val_dataset.get_overfit_loader("val")
else:
train_loader = dataset.get_data_loader("train", distributed=args.distributed)
val_loader = val_dataset.get_data_loader("val")
if rank == 0:
logger.info(f"Training loader has {len(train_loader)} batches")
logger.info(f"Validation loader has {len(val_loader)} batches")
# interrupts are caught and delayed for graceful termination
def sigint_handler(signal, frame):
logger.info("Caught keyboard interrupt signal, will terminate")
nonlocal stop
if stop:
raise KeyboardInterrupt
stop = True
stop = False
signal.signal(signal.SIGINT, sigint_handler)
model = get_model(conf.model.name)(conf.model).to(device)
if args.compile:
model = torch.compile(model, mode=args.compile)
loss_fn = model.loss
if init_cp is not None:
model.load_state_dict(init_cp["model"], strict=False)
if args.distributed:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[device])
if rank == 0 and args.print_arch:
logger.info(f"Model: \n{model}")
torch.backends.cudnn.benchmark = True
if args.detect_anomaly:
torch.autograd.set_detect_anomaly(True)
optimizer_fn = {
"sgd": torch.optim.SGD,
"adam": torch.optim.Adam,
"adamw": torch.optim.AdamW,
"rmsprop": torch.optim.RMSprop,
}[conf.train.optimizer]
params = [(n, p) for n, p in model.named_parameters() if p.requires_grad]
if conf.train.opt_regexp:
params = filter_parameters(params, conf.train.opt_regexp)
all_params = [p for n, p in params]
lr_params = pack_lr_parameters(params, conf.train.lr, conf.train.lr_scaling)
optimizer = optimizer_fn(
lr_params, lr=conf.train.lr, **conf.train.optimizer_options
)
scaler = GradScaler(enabled=args.mixed_precision is not None)
logger.info(f"Training with mixed_precision={args.mixed_precision}")
mp_dtype = {
"float16": torch.float16,
"bfloat16": torch.bfloat16,
None: torch.float32, # we disable it anyway
}[args.mixed_precision]
results = None # fix bug with it saving
lr_scheduler = get_lr_scheduler(optimizer=optimizer, conf=conf.train.lr_schedule)
if args.restore:
optimizer.load_state_dict(init_cp["optimizer"])
if "lr_scheduler" in init_cp:
lr_scheduler.load_state_dict(init_cp["lr_scheduler"])
if rank == 0:
logger.info(
"Starting training with configuration:\n%s", OmegaConf.to_yaml(conf)
)
losses_ = None
def trace_handler(p):
# torch.profiler.tensorboard_trace_handler(str(output_dir))
output = p.key_averages().table(sort_by="self_cuda_time_total", row_limit=10)
print(output)
p.export_chrome_trace("trace_" + str(p.step_num) + ".json")
p.export_stacks("/tmp/profiler_stacks.txt", "self_cuda_time_total")
if args.profile:
prof = torch.profiler.profile(
schedule=torch.profiler.schedule(wait=1, warmup=1, active=1, repeat=1),
on_trace_ready=torch.profiler.tensorboard_trace_handler(str(output_dir)),
record_shapes=True,
profile_memory=True,
with_stack=True,
)
prof.__enter__()
while epoch < conf.train.epochs and not stop:
if rank == 0:
logger.info(f"Starting epoch {epoch}")
# we first run the eval
if (
rank == 0
and epoch % conf.train.test_every_epoch == 0
and args.run_benchmarks
):
for bname, eval_conf in conf.get("benchmarks", {}).items():
logger.info(f"Running eval on {bname}")
s, f, r = run_benchmark(
bname,
eval_conf,
EVAL_PATH / bname / args.experiment / str(epoch),
model.eval(),
)
logger.info(str(s))
for metric_name, value in s.items():
writer.add_scalar(f"test/{bname}/{metric_name}", value, epoch)
for fig_name, fig in f.items():
writer.add_figure(f"figures/{bname}/{fig_name}", fig, epoch)
# set the seed
set_seed(conf.train.seed + epoch)
# update learning rate
if conf.train.lr_schedule.on_epoch and epoch > 0:
old_lr = optimizer.param_groups[0]["lr"]
lr_scheduler.step()
logger.info(
f'lr changed from {old_lr} to {optimizer.param_groups[0]["lr"]}'
)
if args.distributed:
train_loader.sampler.set_epoch(epoch)
if epoch > 0 and conf.train.dataset_callback_fn and not args.overfit:
loaders = [train_loader]
if conf.train.dataset_callback_on_val:
loaders += [val_loader]
for loader in loaders:
if isinstance(loader.dataset, torch.utils.data.Subset):
getattr(loader.dataset.dataset, conf.train.dataset_callback_fn)(
conf.train.seed + epoch
)
else:
getattr(loader.dataset, conf.train.dataset_callback_fn)(
conf.train.seed + epoch
)
for it, data in enumerate(train_loader):
tot_it = (len(train_loader) * epoch + it) * (
args.n_gpus if args.distributed else 1
)
tot_n_samples = tot_it
if not args.log_it:
# We normalize the x-axis of tensorflow to num samples!
tot_n_samples *= train_loader.batch_size
model.train()
optimizer.zero_grad()
with autocast(enabled=args.mixed_precision is not None, dtype=mp_dtype):
data = batch_to_device(data, device, non_blocking=True)
pred = model(data)
losses, _ = loss_fn(pred, data)
loss = torch.mean(losses["total"])
if torch.isnan(loss).any():
print(f"Detected NAN, skipping iteration {it}")
del pred, data, loss, losses
continue
do_backward = loss.requires_grad
if args.distributed:
do_backward = torch.tensor(do_backward).float().to(device)
torch.distributed.all_reduce(
do_backward, torch.distributed.ReduceOp.PRODUCT
)
do_backward = do_backward > 0
if do_backward:
scaler.scale(loss).backward()
if args.detect_anomaly:
# Check for params without any gradient which causes
# problems in distributed training with checkpointing
detected_anomaly = False
for name, param in model.named_parameters():
if param.grad is None and param.requires_grad:
print(f"param {name} has no gradient.")
detected_anomaly = True
if detected_anomaly:
raise RuntimeError("Detected anomaly in training.")
if conf.train.get("clip_grad", None):
scaler.unscale_(optimizer)
try:
torch.nn.utils.clip_grad_norm_(
all_params,
max_norm=conf.train.clip_grad,
error_if_nonfinite=True,
)
scaler.step(optimizer)
except RuntimeError:
logger.warning("NaN detected in gradients. Skipping iteration.")
scaler.update()
else:
scaler.step(optimizer)
scaler.update()
if not conf.train.lr_schedule.on_epoch:
lr_scheduler.step()
else:
if rank == 0:
logger.warning(f"Skip iteration {it} due to detach.")
if args.profile:
prof.step()
if it % conf.train.log_every_iter == 0:
for k in sorted(losses.keys()):
if args.distributed:
losses[k] = losses[k].sum(-1)
torch.distributed.reduce(losses[k], dst=0)
losses[k] /= train_loader.batch_size * args.n_gpus
losses[k] = torch.mean(losses[k], -1)
losses[k] = losses[k].item()
if rank == 0:
str_losses = [f"{k} {v:.3E}" for k, v in losses.items()]
logger.info(
"[E {} | it {}] loss {{{}}}".format(
epoch, it, ", ".join(str_losses)
)
)
for k, v in losses.items():
writer.add_scalar("training/" + k, v, tot_n_samples)
writer.add_scalar(
"training/lr", optimizer.param_groups[0]["lr"], tot_n_samples
)
writer.add_scalar("training/epoch", epoch, tot_n_samples)
if conf.train.log_grad_every_iter is not None:
if it % conf.train.log_grad_every_iter == 0:
grad_txt = ""
for name, param in model.named_parameters():
if param.grad is not None and param.requires_grad:
if name.endswith("bias"):
continue
writer.add_histogram(
f"grad/{name}", param.grad.detach(), tot_n_samples
)
norm = torch.norm(param.grad.detach(), 2)
grad_txt += f"{name} {norm.item():.3f} \n"
writer.add_text("grad/summary", grad_txt, tot_n_samples)
del pred, data, loss, losses
# Run validation
if (
(
it % conf.train.eval_every_iter == 0
and (it > 0 or epoch == -int(args.no_eval_0))
)
or stop
or it == (len(train_loader) - 1)
):
with fork_rng(seed=conf.train.seed):
results, pr_metrics, figures = do_evaluation(
model,
val_loader,
device,
loss_fn,
conf.train,
pbar=(rank == -1),
)
if rank == 0:
str_results = [
f"{k} {v:.3E}"
for k, v in results.items()
if isinstance(v, float)
]
logger.info(f'[Validation] {{{", ".join(str_results)}}}')
for k, v in results.items():
if isinstance(v, dict):
writer.add_scalars(f"figure/val/{k}", v, tot_n_samples)
else:
writer.add_scalar("val/" + k, v, tot_n_samples)
for k, v in pr_metrics.items():
writer.add_pr_curve("val/" + k, *v, tot_n_samples)
# @TODO: optional always save checkpoint
if results[conf.train.best_key] < best_eval:
best_eval = results[conf.train.best_key]
save_experiment(
model,
optimizer,
lr_scheduler,
conf,
losses_,
results,
best_eval,
epoch,
tot_it,
output_dir,
stop,
args.distributed,
cp_name="checkpoint_best.tar",
)
logger.info(f"New best val: {conf.train.best_key}={best_eval}")
if len(figures) > 0:
for i, figs in enumerate(figures):
for name, fig in figs.items():
writer.add_figure(
f"figures/{i}_{name}", fig, tot_n_samples
)
torch.cuda.empty_cache() # should be cleared at the first iter
if (tot_it % conf.train.save_every_iter == 0 and tot_it > 0) and rank == 0:
if results is None:
results, _, _ = do_evaluation(
model,
val_loader,
device,
loss_fn,
conf.train,
pbar=(rank == -1),
)
best_eval = results[conf.train.best_key]
best_eval = save_experiment(
model,
optimizer,
lr_scheduler,
conf,
losses_,
results,
best_eval,
epoch,
tot_it,
output_dir,
stop,
args.distributed,
)
if stop:
break
if rank == 0:
best_eval = save_experiment(
model,
optimizer,
lr_scheduler,
conf,
losses_,
results,
best_eval,
epoch,
tot_it,
output_dir=output_dir,
stop=stop,
distributed=args.distributed,
)
epoch += 1
logger.info(f"Finished training on process {rank}.")
if rank == 0:
writer.close()
def main_worker(rank, conf, output_dir, args):
if rank == 0:
with capture_outputs(output_dir / "log.txt"):
training(rank, conf, output_dir, args)
else:
training(rank, conf, output_dir, args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("experiment", type=str)
parser.add_argument("--conf", type=str)
parser.add_argument(
"--mixed_precision",
"--mp",
default=None,
type=str,
choices=["float16", "bfloat16"],
)
parser.add_argument(
"--compile",
default=None,
type=str,
choices=["default", "reduce-overhead", "max-autotune"],
)
parser.add_argument("--overfit", action="store_true")
parser.add_argument("--restore", action="store_true")
parser.add_argument("--distributed", action="store_true")
parser.add_argument("--profile", action="store_true")
parser.add_argument("--print_arch", "--pa", action="store_true")
parser.add_argument("--detect_anomaly", "--da", action="store_true")
parser.add_argument("--log_it", "--log_it", action="store_true")
parser.add_argument("--no_eval_0", action="store_true")
parser.add_argument("--run_benchmarks", action="store_true")
parser.add_argument("dotlist", nargs="*")
args = parser.parse_intermixed_args()
logger.info(f"Starting experiment {args.experiment}")
output_dir = Path(TRAINING_PATH, args.experiment)
output_dir.mkdir(exist_ok=True, parents=True)
conf = OmegaConf.from_cli(args.dotlist)
if args.conf:
conf = OmegaConf.merge(OmegaConf.load(args.conf), conf)
elif args.restore:
restore_conf = OmegaConf.load(output_dir / "config.yaml")
conf = OmegaConf.merge(restore_conf, conf)
if not args.restore:
if conf.train.seed is None:
conf.train.seed = torch.initial_seed() & (2**32 - 1)
OmegaConf.save(conf, str(output_dir / "config.yaml"))
# copy gluefactory and submodule into output dir
for module in conf.train.get("submodules", []) + [__module_name__]:
mod_dir = Path(__import__(str(module)).__file__).parent
shutil.copytree(mod_dir, output_dir / module, dirs_exist_ok=True)
if args.distributed:
args.n_gpus = torch.cuda.device_count()
args.lock_file = output_dir / "distributed_lock"
if args.lock_file.exists():
args.lock_file.unlink()
torch.multiprocessing.spawn(
main_worker, nprocs=args.n_gpus, args=(conf, output_dir, args)
)
else:
main_worker(0, conf, output_dir, args)