Realcat
add: GIM (https://github.com/xuelunshen/gim)
c0283b3
raw
history blame
13.3 kB
#!/usr/bin/env python3
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Script to pre-process the CO3D dataset.
# Usage:
# python3 datasets_preprocess/preprocess_co3d.py --co3d_dir /path/to/co3d
# --------------------------------------------------------
import argparse
import random
import gzip
import json
import os
import os.path as osp
import torch
import PIL.Image
import numpy as np
import cv2
from tqdm.auto import tqdm
import matplotlib.pyplot as plt
import path_to_root # noqa
import dust3r.datasets.utils.cropping as cropping # noqa
CATEGORIES = [
"apple", "backpack", "ball", "banana", "baseballbat", "baseballglove",
"bench", "bicycle", "book", "bottle", "bowl", "broccoli", "cake", "car", "carrot",
"cellphone", "chair", "couch", "cup", "donut", "frisbee", "hairdryer", "handbag",
"hotdog", "hydrant", "keyboard", "kite", "laptop", "microwave",
"motorcycle",
"mouse", "orange", "parkingmeter", "pizza", "plant", "remote", "sandwich",
"skateboard", "stopsign",
"suitcase", "teddybear", "toaster", "toilet", "toybus",
"toyplane", "toytrain", "toytruck", "tv",
"umbrella", "vase", "wineglass",
]
CATEGORIES_IDX = {cat: i for i, cat in enumerate(CATEGORIES)} # for seeding
SINGLE_SEQUENCE_CATEGORIES = sorted(set(CATEGORIES) - set(["microwave", "stopsign", "tv"]))
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--category", type=str, default=None)
parser.add_argument('--single_sequence_subset', default=False, action='store_true',
help="prepare the single_sequence_subset instead.")
parser.add_argument("--output_dir", type=str, default="data/co3d_processed")
parser.add_argument("--co3d_dir", type=str, required=True)
parser.add_argument("--num_sequences_per_object", type=int, default=50)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--min_quality", type=float, default=0.5, help="Minimum viewpoint quality score.")
parser.add_argument("--img_size", type=int, default=512,
help=("lower dimension will be >= img_size * 3/4, and max dimension will be >= img_size"))
return parser
def convert_ndc_to_pinhole(focal_length, principal_point, image_size):
focal_length = np.array(focal_length)
principal_point = np.array(principal_point)
image_size_wh = np.array([image_size[1], image_size[0]])
half_image_size = image_size_wh / 2
rescale = half_image_size.min()
principal_point_px = half_image_size - principal_point * rescale
focal_length_px = focal_length * rescale
fx, fy = focal_length_px[0], focal_length_px[1]
cx, cy = principal_point_px[0], principal_point_px[1]
K = np.array([[fx, 0.0, cx], [0.0, fy, cy], [0.0, 0.0, 1.0]], dtype=np.float32)
return K
def opencv_from_cameras_projection(R, T, focal, p0, image_size):
R = torch.from_numpy(R)[None, :, :]
T = torch.from_numpy(T)[None, :]
focal = torch.from_numpy(focal)[None, :]
p0 = torch.from_numpy(p0)[None, :]
image_size = torch.from_numpy(image_size)[None, :]
R_pytorch3d = R.clone()
T_pytorch3d = T.clone()
focal_pytorch3d = focal
p0_pytorch3d = p0
T_pytorch3d[:, :2] *= -1
R_pytorch3d[:, :, :2] *= -1
tvec = T_pytorch3d
R = R_pytorch3d.permute(0, 2, 1)
# Retype the image_size correctly and flip to width, height.
image_size_wh = image_size.to(R).flip(dims=(1,))
# NDC to screen conversion.
scale = image_size_wh.to(R).min(dim=1, keepdim=True)[0] / 2.0
scale = scale.expand(-1, 2)
c0 = image_size_wh / 2.0
principal_point = -p0_pytorch3d * scale + c0
focal_length = focal_pytorch3d * scale
camera_matrix = torch.zeros_like(R)
camera_matrix[:, :2, 2] = principal_point
camera_matrix[:, 2, 2] = 1.0
camera_matrix[:, 0, 0] = focal_length[:, 0]
camera_matrix[:, 1, 1] = focal_length[:, 1]
return R[0], tvec[0], camera_matrix[0]
def get_set_list(category_dir, split, is_single_sequence_subset=False):
listfiles = os.listdir(osp.join(category_dir, "set_lists"))
if is_single_sequence_subset:
# not all objects have manyview_dev
subset_list_files = [f for f in listfiles if "manyview_dev" in f]
else:
subset_list_files = [f for f in listfiles if f"fewview_train" in f]
sequences_all = []
for subset_list_file in subset_list_files:
with open(osp.join(category_dir, "set_lists", subset_list_file)) as f:
subset_lists_data = json.load(f)
sequences_all.extend(subset_lists_data[split])
return sequences_all
def prepare_sequences(category, co3d_dir, output_dir, img_size, split, min_quality, max_num_sequences_per_object,
seed, is_single_sequence_subset=False):
random.seed(seed)
category_dir = osp.join(co3d_dir, category)
category_output_dir = osp.join(output_dir, category)
sequences_all = get_set_list(category_dir, split, is_single_sequence_subset)
sequences_numbers = sorted(set(seq_name for seq_name, _, _ in sequences_all))
frame_file = osp.join(category_dir, "frame_annotations.jgz")
sequence_file = osp.join(category_dir, "sequence_annotations.jgz")
with gzip.open(frame_file, "r") as fin:
frame_data = json.loads(fin.read())
with gzip.open(sequence_file, "r") as fin:
sequence_data = json.loads(fin.read())
frame_data_processed = {}
for f_data in frame_data:
sequence_name = f_data["sequence_name"]
frame_data_processed.setdefault(sequence_name, {})[f_data["frame_number"]] = f_data
good_quality_sequences = set()
for seq_data in sequence_data:
if seq_data["viewpoint_quality_score"] > min_quality:
good_quality_sequences.add(seq_data["sequence_name"])
sequences_numbers = [seq_name for seq_name in sequences_numbers if seq_name in good_quality_sequences]
if len(sequences_numbers) < max_num_sequences_per_object:
selected_sequences_numbers = sequences_numbers
else:
selected_sequences_numbers = random.sample(sequences_numbers, max_num_sequences_per_object)
selected_sequences_numbers_dict = {seq_name: [] for seq_name in selected_sequences_numbers}
sequences_all = [(seq_name, frame_number, filepath)
for seq_name, frame_number, filepath in sequences_all
if seq_name in selected_sequences_numbers_dict]
for seq_name, frame_number, filepath in tqdm(sequences_all):
frame_idx = int(filepath.split('/')[-1][5:-4])
selected_sequences_numbers_dict[seq_name].append(frame_idx)
mask_path = filepath.replace("images", "masks").replace(".jpg", ".png")
frame_data = frame_data_processed[seq_name][frame_number]
focal_length = frame_data["viewpoint"]["focal_length"]
principal_point = frame_data["viewpoint"]["principal_point"]
image_size = frame_data["image"]["size"]
K = convert_ndc_to_pinhole(focal_length, principal_point, image_size)
R, tvec, camera_intrinsics = opencv_from_cameras_projection(np.array(frame_data["viewpoint"]["R"]),
np.array(frame_data["viewpoint"]["T"]),
np.array(focal_length),
np.array(principal_point),
np.array(image_size))
frame_data = frame_data_processed[seq_name][frame_number]
depth_path = os.path.join(co3d_dir, frame_data["depth"]["path"])
assert frame_data["depth"]["scale_adjustment"] == 1.0
image_path = os.path.join(co3d_dir, filepath)
mask_path_full = os.path.join(co3d_dir, mask_path)
input_rgb_image = PIL.Image.open(image_path).convert('RGB')
input_mask = plt.imread(mask_path_full)
with PIL.Image.open(depth_path) as depth_pil:
# the image is stored with 16-bit depth but PIL reads it as I (32 bit).
# we cast it to uint16, then reinterpret as float16, then cast to float32
input_depthmap = (
np.frombuffer(np.array(depth_pil, dtype=np.uint16), dtype=np.float16)
.astype(np.float32)
.reshape((depth_pil.size[1], depth_pil.size[0])))
depth_mask = np.stack((input_depthmap, input_mask), axis=-1)
H, W = input_depthmap.shape
camera_intrinsics = camera_intrinsics.numpy()
cx, cy = camera_intrinsics[:2, 2].round().astype(int)
min_margin_x = min(cx, W-cx)
min_margin_y = min(cy, H-cy)
# the new window will be a rectangle of size (2*min_margin_x, 2*min_margin_y) centered on (cx,cy)
l, t = cx - min_margin_x, cy - min_margin_y
r, b = cx + min_margin_x, cy + min_margin_y
crop_bbox = (l, t, r, b)
input_rgb_image, depth_mask, input_camera_intrinsics = cropping.crop_image_depthmap(
input_rgb_image, depth_mask, camera_intrinsics, crop_bbox)
# try to set the lower dimension to img_size * 3/4 -> img_size=512 => 384
scale_final = ((img_size * 3 // 4) / min(H, W)) + 1e-8
output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int)
if max(output_resolution) < img_size:
# let's put the max dimension to img_size
scale_final = (img_size / max(H, W)) + 1e-8
output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int)
input_rgb_image, depth_mask, input_camera_intrinsics = cropping.rescale_image_depthmap(
input_rgb_image, depth_mask, input_camera_intrinsics, output_resolution)
input_depthmap = depth_mask[:, :, 0]
input_mask = depth_mask[:, :, 1]
# generate and adjust camera pose
camera_pose = np.eye(4, dtype=np.float32)
camera_pose[:3, :3] = R
camera_pose[:3, 3] = tvec
camera_pose = np.linalg.inv(camera_pose)
# save crop images and depth, metadata
save_img_path = os.path.join(output_dir, filepath)
save_depth_path = os.path.join(output_dir, frame_data["depth"]["path"])
save_mask_path = os.path.join(output_dir, mask_path)
os.makedirs(os.path.split(save_img_path)[0], exist_ok=True)
os.makedirs(os.path.split(save_depth_path)[0], exist_ok=True)
os.makedirs(os.path.split(save_mask_path)[0], exist_ok=True)
input_rgb_image.save(save_img_path)
scaled_depth_map = (input_depthmap / np.max(input_depthmap) * 65535).astype(np.uint16)
cv2.imwrite(save_depth_path, scaled_depth_map)
cv2.imwrite(save_mask_path, (input_mask * 255).astype(np.uint8))
save_meta_path = save_img_path.replace('jpg', 'npz')
np.savez(save_meta_path, camera_intrinsics=input_camera_intrinsics,
camera_pose=camera_pose, maximum_depth=np.max(input_depthmap))
return selected_sequences_numbers_dict
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
assert args.co3d_dir != args.output_dir
if args.category is None:
if args.single_sequence_subset:
categories = SINGLE_SEQUENCE_CATEGORIES
else:
categories = CATEGORIES
else:
categories = [args.category]
os.makedirs(args.output_dir, exist_ok=True)
for split in ['train', 'test']:
selected_sequences_path = os.path.join(args.output_dir, f'selected_seqs_{split}.json')
if os.path.isfile(selected_sequences_path):
continue
all_selected_sequences = {}
for category in categories:
category_output_dir = osp.join(args.output_dir, category)
os.makedirs(category_output_dir, exist_ok=True)
category_selected_sequences_path = os.path.join(category_output_dir, f'selected_seqs_{split}.json')
if os.path.isfile(category_selected_sequences_path):
with open(category_selected_sequences_path, 'r') as fid:
category_selected_sequences = json.load(fid)
else:
print(f"Processing {split} - category = {category}")
category_selected_sequences = prepare_sequences(
category=category,
co3d_dir=args.co3d_dir,
output_dir=args.output_dir,
img_size=args.img_size,
split=split,
min_quality=args.min_quality,
max_num_sequences_per_object=args.num_sequences_per_object,
seed=args.seed + CATEGORIES_IDX[category],
is_single_sequence_subset=args.single_sequence_subset
)
with open(category_selected_sequences_path, 'w') as file:
json.dump(category_selected_sequences, file)
all_selected_sequences[category] = category_selected_sequences
with open(selected_sequences_path, 'w') as file:
json.dump(all_selected_sequences, file)