Realcat
add: GIM (https://github.com/xuelunshen/gim)
c0283b3
raw
history blame
2.65 kB
import kornia
import torch
from .utils import get_image_coords
from .wrappers import Camera
def sample_fmap(pts, fmap):
h, w = fmap.shape[-2:]
grid_sample = torch.nn.functional.grid_sample
pts = (pts / pts.new_tensor([[w, h]]) * 2 - 1)[:, None]
# @TODO: This might still be a source of noise --> bilinear interpolation dangerous
interp_lin = grid_sample(fmap, pts, align_corners=False, mode="bilinear")
interp_nn = grid_sample(fmap, pts, align_corners=False, mode="nearest")
return torch.where(torch.isnan(interp_lin), interp_nn, interp_lin)[:, :, 0].permute(
0, 2, 1
)
def sample_depth(pts, depth_):
depth = torch.where(depth_ > 0, depth_, depth_.new_tensor(float("nan")))
depth = depth[:, None]
interp = sample_fmap(pts, depth).squeeze(-1)
valid = (~torch.isnan(interp)) & (interp > 0)
return interp, valid
def sample_normals_from_depth(pts, depth, K):
depth = depth[:, None]
normals = kornia.geometry.depth.depth_to_normals(depth, K)
normals = torch.where(depth > 0, normals, 0.0)
interp = sample_fmap(pts, normals)
valid = (~torch.isnan(interp)) & (interp > 0)
return interp, valid
def project(
kpi,
di,
depthj,
camera_i,
camera_j,
T_itoj,
validi,
ccth=None,
sample_depth_fun=sample_depth,
sample_depth_kwargs=None,
):
if sample_depth_kwargs is None:
sample_depth_kwargs = {}
kpi_3d_i = camera_i.image2cam(kpi)
kpi_3d_i = kpi_3d_i * di[..., None]
kpi_3d_j = T_itoj.transform(kpi_3d_i)
kpi_j, validj = camera_j.cam2image(kpi_3d_j)
# di_j = kpi_3d_j[..., -1]
validi = validi & validj
if depthj is None or ccth is None:
return kpi_j, validi & validj
else:
# circle consistency
dj, validj = sample_depth_fun(kpi_j, depthj, **sample_depth_kwargs)
kpi_j_3d_j = camera_j.image2cam(kpi_j) * dj[..., None]
kpi_j_i, validj_i = camera_i.cam2image(T_itoj.inv().transform(kpi_j_3d_j))
consistent = ((kpi - kpi_j_i) ** 2).sum(-1) < ccth
visible = validi & consistent & validj_i & validj
# visible = validi
return kpi_j, visible
def dense_warp_consistency(
depthi: torch.Tensor,
depthj: torch.Tensor,
T_itoj: torch.Tensor,
camerai: Camera,
cameraj: Camera,
**kwargs,
):
kpi = get_image_coords(depthi).flatten(-3, -2)
di = depthi.flatten(
-2,
)
validi = di > 0
kpir, validir = project(kpi, di, depthj, camerai, cameraj, T_itoj, validi, **kwargs)
return kpir.unflatten(-2, depthi.shape[-2:]), validir.unflatten(
-1, (depthj.shape[-2:])
)