Vincentqyw
add: rord libs
9fb6531
raw
history blame
10.8 kB
import argparse
import numpy as np
import imageio
import torch
from tqdm import tqdm
import time
import scipy
import scipy.io
import scipy.misc
from lib.model_test import D2Net
from lib.utils import preprocess_image
from lib.pyramid import process_multiscale
import cv2
import matplotlib.pyplot as plt
import os
from sys import exit, argv
from PIL import Image
from skimage.feature import match_descriptors
from skimage.measure import ransac
from skimage.transform import ProjectiveTransform, AffineTransform
import pydegensac
def extractSingle(image, model, device):
with torch.no_grad():
keypoints, scores, descriptors = process_multiscale(
image.to(device).unsqueeze(0),
model,
scales=[1]
)
keypoints = keypoints[:, [1, 0, 2]]
feat = {}
feat['keypoints'] = keypoints
feat['scores'] = scores
feat['descriptors'] = descriptors
return feat
def siftMatching(img1, img2, HFile1, HFile2, device):
if HFile1 is not None:
H1 = np.load(HFile1)
H2 = np.load(HFile2)
rgbFile1 = img1
img1 = Image.open(img1)
if(img1.mode != 'RGB'):
img1 = img1.convert('RGB')
img1 = np.array(img1)
if HFile1 is not None:
img1 = cv2.warpPerspective(img1, H1, dsize=(400,400))
#### Visualization ####
# cv2.imshow("Image", cv2.cvtColor(img1, cv2.COLOR_BGR2RGB))
# cv2.waitKey(0)
rgbFile2 = img2
img2 = Image.open(img2)
if(img2.mode != 'RGB'):
img2 = img2.convert('RGB')
img2 = np.array(img2)
if HFile2 is not None:
img2 = cv2.warpPerspective(img2, H2, dsize=(400,400))
#### Visualization ####
# cv2.imshow("Image", cv2.cvtColor(img2, cv2.COLOR_BGR2RGB))
# cv2.waitKey(0)
# surf = cv2.xfeatures2d.SURF_create(100) # SURF
surf = cv2.xfeatures2d.SIFT_create()
kp1, des1 = surf.detectAndCompute(img1, None)
kp2, des2 = surf.detectAndCompute(img2, None)
matches = mnn_matcher(
torch.from_numpy(des1).float().to(device=device),
torch.from_numpy(des2).float().to(device=device)
)
src_pts = np.float32([ kp1[m[0]].pt for m in matches ]).reshape(-1, 2)
dst_pts = np.float32([ kp2[m[1]].pt for m in matches ]).reshape(-1, 2)
if(src_pts.shape[0] < 5 or dst_pts.shape[0] < 5):
return [], []
H, inliers = pydegensac.findHomography(src_pts, dst_pts, 8.0, 0.99, 10000)
n_inliers = np.sum(inliers)
inlier_keypoints_left = [cv2.KeyPoint(point[0], point[1], 1) for point in src_pts[inliers]]
inlier_keypoints_right = [cv2.KeyPoint(point[0], point[1], 1) for point in dst_pts[inliers]]
placeholder_matches = [cv2.DMatch(idx, idx, 1) for idx in range(n_inliers)]
#### Visualization ####
image3 = cv2.drawMatches(img1, inlier_keypoints_left, img2, inlier_keypoints_right, placeholder_matches, None)
image3 = cv2.cvtColor(image3, cv2.COLOR_BGR2RGB)
# cv2.imshow('Matches', image3)
# cv2.waitKey()
src_pts = np.float32([ inlier_keypoints_left[m.queryIdx].pt for m in placeholder_matches ]).reshape(-1, 2)
dst_pts = np.float32([ inlier_keypoints_right[m.trainIdx].pt for m in placeholder_matches ]).reshape(-1, 2)
if HFile1 is None:
return src_pts, dst_pts, image3, image3
orgSrc, orgDst = orgKeypoints(src_pts, dst_pts, H1, H2)
matchImg = drawOrg(cv2.imread(rgbFile1), cv2.imread(rgbFile2), orgSrc, orgDst)
return orgSrc, orgDst, matchImg, image3
def orgKeypoints(src_pts, dst_pts, H1, H2):
ones = np.ones((src_pts.shape[0], 1))
src_pts = np.hstack((src_pts, ones))
dst_pts = np.hstack((dst_pts, ones))
orgSrc = np.linalg.inv(H1) @ src_pts.T
orgDst = np.linalg.inv(H2) @ dst_pts.T
orgSrc = orgSrc/orgSrc[2, :]
orgDst = orgDst/orgDst[2, :]
orgSrc = np.asarray(orgSrc)[0:2, :]
orgDst = np.asarray(orgDst)[0:2, :]
return orgSrc, orgDst
def drawOrg(image1, image2, orgSrc, orgDst):
img1 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB)
img2 = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB)
for i in range(orgSrc.shape[1]):
im1 = cv2.circle(img1, (int(orgSrc[0, i]), int(orgSrc[1, i])), 3, (0, 0, 255), 1)
for i in range(orgDst.shape[1]):
im2 = cv2.circle(img2, (int(orgDst[0, i]), int(orgDst[1, i])), 3, (0, 0, 255), 1)
im4 = cv2.hconcat([im1, im2])
for i in range(orgSrc.shape[1]):
im4 = cv2.line(im4, (int(orgSrc[0, i]), int(orgSrc[1, i])), (int(orgDst[0, i]) + im1.shape[1], int(orgDst[1, i])), (0, 255, 0), 1)
im4 = cv2.cvtColor(im4, cv2.COLOR_BGR2RGB)
# cv2.imshow("Image", im4)
# cv2.waitKey(0)
return im4
def getPerspKeypoints(rgbFile1, rgbFile2, HFile1, HFile2, model, device):
if HFile1 is None:
igp1, img1 = read_and_process_image(rgbFile1, H=None)
else:
H1 = np.load(HFile1)
igp1, img1 = read_and_process_image(rgbFile1, H=H1)
c,h,w = igp1.shape
if HFile2 is None:
igp2, img2 = read_and_process_image(rgbFile2, H=None)
else:
H2 = np.load(HFile2)
igp2, img2 = read_and_process_image(rgbFile2, H=H2)
feat1 = extractSingle(igp1, model, device)
feat2 = extractSingle(igp2, model, device)
matches = mnn_matcher(
torch.from_numpy(feat1['descriptors']).to(device=device),
torch.from_numpy(feat2['descriptors']).to(device=device),
)
pos_a = feat1["keypoints"][matches[:, 0], : 2]
pos_b = feat2["keypoints"][matches[:, 1], : 2]
H, inliers = pydegensac.findHomography(pos_a, pos_b, 8.0, 0.99, 10000)
pos_a = pos_a[inliers]
pos_b = pos_b[inliers]
inlier_keypoints_left = [cv2.KeyPoint(point[0], point[1], 1) for point in pos_a]
inlier_keypoints_right = [cv2.KeyPoint(point[0], point[1], 1) for point in pos_b]
placeholder_matches = [cv2.DMatch(idx, idx, 1) for idx in range(len(pos_a))]
image3 = cv2.drawMatches(img1, inlier_keypoints_left, img2, inlier_keypoints_right, placeholder_matches, None, matchColor=[0, 255, 0])
image3 = cv2.cvtColor(image3, cv2.COLOR_BGR2RGB)
#### Visualization ####
# cv2.imshow('Matches', image3)
# cv2.waitKey()
if HFile1 is None:
return pos_a, pos_b, image3, image3
orgSrc, orgDst = orgKeypoints(pos_a, pos_b, H1, H2)
matchImg = drawOrg(cv2.imread(rgbFile1), cv2.imread(rgbFile2), orgSrc, orgDst) # Reproject matches to perspective View
return orgSrc, orgDst, matchImg, image3
###### Ensemble
def read_and_process_image(img_path, resize=None, H=None, h=None, w=None, preprocessing='caffe'):
img1 = Image.open(img_path)
if resize:
img1 = img1.resize(resize)
if(img1.mode != 'RGB'):
img1 = img1.convert('RGB')
img1 = np.array(img1)
if H is not None:
img1 = cv2.warpPerspective(img1, H, dsize=(400, 400))
# cv2.imshow("Image", cv2.cvtColor(img1, cv2.COLOR_BGR2RGB))
# cv2.waitKey(0)
igp1 = torch.from_numpy(preprocess_image(img1, preprocessing=preprocessing).astype(np.float32))
return igp1, img1
def mnn_matcher_scorer(descriptors_a, descriptors_b, k=np.inf):
device = descriptors_a.device
sim = descriptors_a @ descriptors_b.t()
val1, nn12 = torch.max(sim, dim=1)
val2, nn21 = torch.max(sim, dim=0)
ids1 = torch.arange(0, sim.shape[0], device=device)
mask = (ids1 == nn21[nn12])
matches = torch.stack([ids1[mask], nn12[mask]]).t()
remaining_matches_dist = val1[mask]
return matches, remaining_matches_dist
def mnn_matcher(descriptors_a, descriptors_b):
device = descriptors_a.device
sim = descriptors_a @ descriptors_b.t()
nn12 = torch.max(sim, dim=1)[1]
nn21 = torch.max(sim, dim=0)[1]
ids1 = torch.arange(0, sim.shape[0], device=device)
mask = (ids1 == nn21[nn12])
matches = torch.stack([ids1[mask], nn12[mask]])
return matches.t().data.cpu().numpy()
def getPerspKeypointsEnsemble(model1, model2, rgbFile1, rgbFile2, HFile1, HFile2, device):
if HFile1 is None:
igp1, img1 = read_and_process_image(rgbFile1, H=None)
else:
H1 = np.load(HFile1)
igp1, img1 = read_and_process_image(rgbFile1, H=H1)
c,h,w = igp1.shape
if HFile2 is None:
igp2, img2 = read_and_process_image(rgbFile2, H=None)
else:
H2 = np.load(HFile2)
igp2, img2 = read_and_process_image(rgbFile2, H=H2)
with torch.no_grad():
keypoints_a1, scores_a1, descriptors_a1 = process_multiscale(
igp1.to(device).unsqueeze(0),
model1,
scales=[1]
)
keypoints_a1 = keypoints_a1[:, [1, 0, 2]]
keypoints_a2, scores_a2, descriptors_a2 = process_multiscale(
igp1.to(device).unsqueeze(0),
model2,
scales=[1]
)
keypoints_a2 = keypoints_a2[:, [1, 0, 2]]
keypoints_b1, scores_b1, descriptors_b1 = process_multiscale(
igp2.to(device).unsqueeze(0),
model1,
scales=[1]
)
keypoints_b1 = keypoints_b1[:, [1, 0, 2]]
keypoints_b2, scores_b2, descriptors_b2 = process_multiscale(
igp2.to(device).unsqueeze(0),
model2,
scales=[1]
)
keypoints_b2 = keypoints_b2[:, [1, 0, 2]]
# calculating matches for both models
matches1, dist_1 = mnn_matcher_scorer(
torch.from_numpy(descriptors_a1).to(device=device),
torch.from_numpy(descriptors_b1).to(device=device),
# len(matches1)
)
matches2, dist_2 = mnn_matcher_scorer(
torch.from_numpy(descriptors_a2).to(device=device),
torch.from_numpy(descriptors_b2).to(device=device),
# len(matches1)
)
full_matches = torch.cat([matches1, matches2])
full_dist = torch.cat([dist_1, dist_2])
assert len(full_dist)==(len(dist_1)+len(dist_2)), "something wrong"
k_final = len(full_dist)//2
# k_final = len(full_dist)
# k_final = max(len(dist_1), len(dist_2))
top_k_mask = torch.topk(full_dist, k=k_final)[1]
first = []
second = []
for valid_id in top_k_mask:
if valid_id<len(dist_1):
first.append(valid_id)
else:
second.append(valid_id-len(dist_1))
# final_matches = full_matches[top_k_mask]
matches1 = matches1[torch.tensor(first, device=device).long()].data.cpu().numpy()
matches2 = matches2[torch.tensor(second, device=device).long()].data.cpu().numpy()
pos_a1 = keypoints_a1[matches1[:, 0], : 2]
pos_b1 = keypoints_b1[matches1[:, 1], : 2]
pos_a2 = keypoints_a2[matches2[:, 0], : 2]
pos_b2 = keypoints_b2[matches2[:, 1], : 2]
pos_a = np.concatenate([pos_a1, pos_a2], 0)
pos_b = np.concatenate([pos_b1, pos_b2], 0)
# pos_a, pos_b, inliers = apply_ransac(pos_a, pos_b)
H, inliers = pydegensac.findHomography(pos_a, pos_b, 8.0, 0.99, 10000)
pos_a = pos_a[inliers]
pos_b = pos_b[inliers]
inlier_keypoints_left = [cv2.KeyPoint(point[0], point[1], 1) for point in pos_a]
inlier_keypoints_right = [cv2.KeyPoint(point[0], point[1], 1) for point in pos_b]
placeholder_matches = [cv2.DMatch(idx, idx, 1) for idx in range(len(pos_a))]
image3 = cv2.drawMatches(img1, inlier_keypoints_left, img2, inlier_keypoints_right, placeholder_matches, None, matchColor=[0, 255, 0])
image3 = cv2.cvtColor(image3, cv2.COLOR_BGR2RGB)
# cv2.imshow('Matches', image3)
# cv2.waitKey()
orgSrc, orgDst = orgKeypoints(pos_a, pos_b, H1, H2)
matchImg = drawOrg(cv2.imread(rgbFile1), cv2.imread(rgbFile2), orgSrc, orgDst)
return orgSrc, orgDst, matchImg, image3
if __name__ == '__main__':
WEIGHTS = '../models/rord.pth'
srcR = argv[1]
trgR = argv[2]
srcH = argv[3]
trgH = argv[4]
orgSrc, orgDst = getPerspKeypoints(srcR, trgR, srcH, trgH, WEIGHTS, ('gpu'))