Vincentqyw
fix: roma
358ab8f
raw
history blame
5 kB
from pathlib import Path
import argparse
import cv2
import matplotlib.cm as cm
import torch
import numpy as np
from utils.nnmatching import NNMatching
from utils.misc import (
AverageTimer,
VideoStreamer,
make_matching_plot_fast,
frame2tensor,
)
torch.set_grad_enabled(False)
def compute_essential(matched_kp1, matched_kp2, K):
pts1 = cv2.undistortPoints(
matched_kp1,
cameraMatrix=K,
distCoeffs=(-0.117918271740560, 0.075246403574314, 0, 0),
)
pts2 = cv2.undistortPoints(
matched_kp2,
cameraMatrix=K,
distCoeffs=(-0.117918271740560, 0.075246403574314, 0, 0),
)
K_1 = np.eye(3)
# Estimate the homography between the matches using RANSAC
ransac_model, ransac_inliers = cv2.findEssentialMat(
pts1, pts2, K_1, method=cv2.RANSAC, prob=0.999, threshold=0.001, maxIters=10000
)
if ransac_inliers is None or ransac_model.shape != (3, 3):
ransac_inliers = np.array([])
ransac_model = None
return ransac_model, ransac_inliers, pts1, pts2
sizer = (960, 640)
focallength_x = 4.504986436499113e03 / (6744 / sizer[0])
focallength_y = 4.513311442889859e03 / (4502 / sizer[1])
K = np.eye(3)
K[0, 0] = focallength_x
K[1, 1] = focallength_y
K[0, 2] = 3.363322177533149e03 / (6744 / sizer[0]) # * 0.5
K[1, 2] = 2.291824660547715e03 / (4502 / sizer[1]) # * 0.5
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="DarkFeat demo",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument("--input", type=str, help="path to an image directory")
parser.add_argument(
"--output_dir",
type=str,
default=None,
help="Directory where to write output frames (If None, no output)",
)
parser.add_argument(
"--image_glob",
type=str,
nargs="+",
default=["*.ARW"],
help="Glob if a directory of images is specified",
)
parser.add_argument(
"--resize",
type=int,
nargs="+",
default=[640, 480],
help="Resize the input image before running inference. If two numbers, "
"resize to the exact dimensions, if one number, resize the max "
"dimension, if -1, do not resize",
)
parser.add_argument(
"--force_cpu", action="store_true", help="Force pytorch to run in CPU mode."
)
parser.add_argument("--model_path", type=str, help="Path to the pretrained model")
opt = parser.parse_args()
print(opt)
assert len(opt.resize) == 2
print("Will resize to {}x{} (WxH)".format(opt.resize[0], opt.resize[1]))
device = "cuda" if torch.cuda.is_available() and not opt.force_cpu else "cpu"
print('Running inference on device "{}"'.format(device))
matching = NNMatching(opt.model_path).eval().to(device)
keys = ["keypoints", "scores", "descriptors"]
vs = VideoStreamer(opt.input, opt.resize, opt.image_glob)
frame, ret = vs.next_frame()
assert ret, "Error when reading the first frame (try different --input?)"
frame_tensor = frame2tensor(frame, device)
last_data = matching.darkfeat({"image": frame_tensor})
last_data = {k + "0": [last_data[k]] for k in keys}
last_data["image0"] = frame_tensor
last_frame = frame
last_image_id = 0
if opt.output_dir is not None:
print("==> Will write outputs to {}".format(opt.output_dir))
Path(opt.output_dir).mkdir(exist_ok=True)
timer = AverageTimer()
while True:
frame, ret = vs.next_frame()
if not ret:
print("Finished demo_darkfeat.py")
break
timer.update("data")
stem0, stem1 = last_image_id, vs.i - 1
frame_tensor = frame2tensor(frame, device)
pred = matching({**last_data, "image1": frame_tensor})
kpts0 = last_data["keypoints0"][0].cpu().numpy()
kpts1 = pred["keypoints1"][0].cpu().numpy()
matches = pred["matches0"][0].cpu().numpy()
confidence = pred["matching_scores0"][0].cpu().numpy()
timer.update("forward")
valid = matches > -1
mkpts0 = kpts0[valid]
mkpts1 = kpts1[matches[valid]]
E, inliers, pts1, pts2 = compute_essential(mkpts0, mkpts1, K)
color = cm.jet(
np.clip(confidence[valid][inliers[:, 0].astype("bool")] * 2 - 1, -1, 1)
)
text = ["DarkFeat", "Matches: {}".format(inliers.sum())]
out = make_matching_plot_fast(
last_frame,
frame,
mkpts0[inliers[:, 0].astype("bool")],
mkpts1[inliers[:, 0].astype("bool")],
color,
text,
path=None,
small_text=" ",
)
if opt.output_dir is not None:
stem = "matches_{:06}_{:06}".format(stem0, stem1)
out_file = str(Path(opt.output_dir, stem + ".png"))
print("Writing image to {}".format(out_file))
cv2.imwrite(out_file, out)