Vincentqyw
fix: roma
358ab8f
raw
history blame
4.83 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from .score import peakiness_score
class BaseNet(nn.Module):
"""Helper class to construct a fully-convolutional network that
extract a l2-normalized patch descriptor.
"""
def __init__(self, inchan=3, dilated=True, dilation=1, bn=True, bn_affine=False):
super(BaseNet, self).__init__()
self.inchan = inchan
self.curchan = inchan
self.dilated = dilated
self.dilation = dilation
self.bn = bn
self.bn_affine = bn_affine
def _make_bn(self, outd):
return nn.BatchNorm2d(outd, affine=self.bn_affine)
def _add_conv(
self,
outd,
k=3,
stride=1,
dilation=1,
bn=True,
relu=True,
k_pool=1,
pool_type="max",
bias=False,
):
# as in the original implementation, dilation is applied at the end of layer, so it will have impact only from next layer
d = self.dilation * dilation
# if self.dilated:
# conv_params = dict(padding=((k-1)*d)//2, dilation=d, stride=1)
# self.dilation *= stride
# else:
# conv_params = dict(padding=((k-1)*d)//2, dilation=d, stride=stride)
conv_params = dict(
padding=((k - 1) * d) // 2, dilation=d, stride=stride, bias=bias
)
ops = nn.ModuleList([])
ops.append(nn.Conv2d(self.curchan, outd, kernel_size=k, **conv_params))
if bn and self.bn:
ops.append(self._make_bn(outd))
if relu:
ops.append(nn.ReLU(inplace=True))
self.curchan = outd
if k_pool > 1:
if pool_type == "avg":
ops.append(torch.nn.AvgPool2d(kernel_size=k_pool))
elif pool_type == "max":
ops.append(torch.nn.MaxPool2d(kernel_size=k_pool))
else:
print(f"Error, unknown pooling type {pool_type}...")
return nn.Sequential(*ops)
class Quad_L2Net(BaseNet):
"""Same than L2_Net, but replace the final 8x8 conv by 3 successive 2x2 convs."""
def __init__(self, dim=128, mchan=4, relu22=False, **kw):
BaseNet.__init__(self, **kw)
self.conv0 = self._add_conv(8 * mchan)
self.conv1 = self._add_conv(8 * mchan, bn=False)
self.bn1 = self._make_bn(8 * mchan)
self.conv2 = self._add_conv(16 * mchan, stride=2)
self.conv3 = self._add_conv(16 * mchan, bn=False)
self.bn3 = self._make_bn(16 * mchan)
self.conv4 = self._add_conv(32 * mchan, stride=2)
self.conv5 = self._add_conv(32 * mchan)
# replace last 8x8 convolution with 3 3x3 convolutions
self.conv6_0 = self._add_conv(32 * mchan)
self.conv6_1 = self._add_conv(32 * mchan)
self.conv6_2 = self._add_conv(dim, bn=False, relu=False)
self.out_dim = dim
self.moving_avg_params = nn.ParameterList(
[
Parameter(torch.tensor(1.0), requires_grad=False),
Parameter(torch.tensor(1.0), requires_grad=False),
Parameter(torch.tensor(1.0), requires_grad=False),
]
)
def forward(self, x):
# x: [N, C, H, W]
x0 = self.conv0(x)
x1 = self.conv1(x0)
x1_bn = self.bn1(x1)
x2 = self.conv2(x1_bn)
x3 = self.conv3(x2)
x3_bn = self.bn3(x3)
x4 = self.conv4(x3_bn)
x5 = self.conv5(x4)
x6_0 = self.conv6_0(x5)
x6_1 = self.conv6_1(x6_0)
x6_2 = self.conv6_2(x6_1)
# calculate score map
comb_weights = torch.tensor([1.0, 2.0, 3.0], device=x.device)
comb_weights /= torch.sum(comb_weights)
ksize = [3, 2, 1]
det_score_maps = []
for idx, xx in enumerate([x1, x3, x6_2]):
if self.training:
instance_max = torch.max(xx)
self.moving_avg_params[idx].data = (
self.moving_avg_params[idx] * 0.99 + instance_max.detach() * 0.01
)
else:
pass
alpha, beta = peakiness_score(
xx, self.moving_avg_params[idx].detach(), ksize=3, dilation=ksize[idx]
)
score_vol = alpha * beta
det_score_map = torch.max(score_vol, dim=1, keepdim=True)[0]
det_score_map = F.interpolate(
det_score_map, size=x.shape[2:], mode="bilinear", align_corners=True
)
det_score_map = comb_weights[idx] * det_score_map
det_score_maps.append(det_score_map)
det_score_map = torch.sum(torch.stack(det_score_maps, dim=0), dim=0)
# print([param.data for param in self.moving_avg_params])
return x6_2, det_score_map, x1, x3