Vincentqyw
fix: roma
358ab8f
raw
history blame
4.52 kB
import math
import numpy as np
import cv2
def extract_ORB_keypoints_and_descriptors(img):
# gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
detector = cv2.ORB_create(nfeatures=1000)
kp, desc = detector.detectAndCompute(img, None)
return kp, desc
def match_descriptors_NG(kp1, desc1, kp2, desc2):
bf = cv2.BFMatcher()
try:
matches = bf.knnMatch(desc1, desc2, k=2)
except:
matches = []
good_matches = []
image1_kp = []
image2_kp = []
ratios = []
try:
for (m1, m2) in matches:
if m1.distance < 0.8 * m2.distance:
good_matches.append(m1)
image2_kp.append(kp2[m1.trainIdx].pt)
image1_kp.append(kp1[m1.queryIdx].pt)
ratios.append(m1.distance / m2.distance)
except:
pass
image1_kp = np.array([image1_kp])
image2_kp = np.array([image2_kp])
ratios = np.array([ratios])
ratios = np.expand_dims(ratios, 2)
return image1_kp, image2_kp, good_matches, ratios
def match_descriptors(kp1, desc1, kp2, desc2, ORB):
if ORB:
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
try:
matches = bf.match(desc1, desc2)
matches = sorted(matches, key=lambda x: x.distance)
except:
matches = []
good_matches = []
image1_kp = []
image2_kp = []
count = 0
try:
for m in matches:
count += 1
if count < 1000:
good_matches.append(m)
image2_kp.append(kp2[m.trainIdx].pt)
image1_kp.append(kp1[m.queryIdx].pt)
except:
pass
else:
# Match the keypoints with the warped_keypoints with nearest neighbor search
bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)
try:
matches = bf.match(desc1.transpose(1, 0), desc2.transpose(1, 0))
matches = sorted(matches, key=lambda x: x.distance)
except:
matches = []
good_matches = []
image1_kp = []
image2_kp = []
try:
for m in matches:
good_matches.append(m)
image2_kp.append(kp2[m.trainIdx].pt)
image1_kp.append(kp1[m.queryIdx].pt)
except:
pass
image1_kp = np.array([image1_kp])
image2_kp = np.array([image2_kp])
return image1_kp, image2_kp, good_matches
def compute_essential(matched_kp1, matched_kp2, K):
pts1 = cv2.undistortPoints(
matched_kp1,
cameraMatrix=K,
distCoeffs=(-0.117918271740560, 0.075246403574314, 0, 0),
)
pts2 = cv2.undistortPoints(
matched_kp2,
cameraMatrix=K,
distCoeffs=(-0.117918271740560, 0.075246403574314, 0, 0),
)
K_1 = np.eye(3)
# Estimate the homography between the matches using RANSAC
ransac_model, ransac_inliers = cv2.findEssentialMat(
pts1, pts2, K_1, method=cv2.FM_RANSAC, prob=0.999, threshold=0.001
)
if ransac_inliers is None or ransac_model.shape != (3, 3):
ransac_inliers = np.array([])
ransac_model = None
return ransac_model, ransac_inliers, pts1, pts2
def compute_error(R_GT, t_GT, E, pts1_norm, pts2_norm, inliers):
"""Compute the angular error between two rotation matrices and two translation vectors.
Keyword arguments:
R -- 2D numpy array containing an estimated rotation
gt_R -- 2D numpy array containing the corresponding ground truth rotation
t -- 2D numpy array containing an estimated translation as column
gt_t -- 2D numpy array containing the corresponding ground truth translation
"""
inliers = inliers.ravel()
R = np.eye(3)
t = np.zeros((3, 1))
sst = True
try:
cv2.recoverPose(E, pts1_norm, pts2_norm, np.eye(3), R, t, inliers)
except:
sst = False
# calculate angle between provided rotations
#
if sst:
dR = np.matmul(R, np.transpose(R_GT))
dR = cv2.Rodrigues(dR)[0]
dR = np.linalg.norm(dR) * 180 / math.pi
# calculate angle between provided translations
dT = float(np.dot(t_GT.T, t))
dT /= float(np.linalg.norm(t_GT))
if dT > 1 or dT < -1:
print("Domain warning! dT:", dT)
dT = max(-1, min(1, dT))
dT = math.acos(dT) * 180 / math.pi
dT = np.minimum(dT, 180 - dT) # ambiguity of E estimation
else:
dR, dT = 180.0, 180.0
return dR, dT