Spaces:
Running
Running
#!/usr/bin/env python3 | |
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# Script to pre-process the arkitscenes dataset. | |
# Usage: | |
# python3 datasets_preprocess/preprocess_arkitscenes.py --arkitscenes_dir /path/to/arkitscenes --precomputed_pairs /path/to/arkitscenes_pairs | |
# -------------------------------------------------------- | |
import os | |
import json | |
import os.path as osp | |
import decimal | |
import argparse | |
import math | |
from bisect import bisect_left | |
from PIL import Image | |
import numpy as np | |
import quaternion | |
from scipy import interpolate | |
import cv2 | |
def get_parser(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--arkitscenes_dir', required=True) | |
parser.add_argument('--precomputed_pairs', required=True) | |
parser.add_argument('--output_dir', default='data/arkitscenes_processed') | |
return parser | |
def value_to_decimal(value, decimal_places): | |
decimal.getcontext().rounding = decimal.ROUND_HALF_UP # define rounding method | |
return decimal.Decimal(str(float(value))).quantize(decimal.Decimal('1e-{}'.format(decimal_places))) | |
def closest(value, sorted_list): | |
index = bisect_left(sorted_list, value) | |
if index == 0: | |
return sorted_list[0] | |
elif index == len(sorted_list): | |
return sorted_list[-1] | |
else: | |
value_before = sorted_list[index - 1] | |
value_after = sorted_list[index] | |
if value_after - value < value - value_before: | |
return value_after | |
else: | |
return value_before | |
def get_up_vectors(pose_device_to_world): | |
return np.matmul(pose_device_to_world, np.array([[0.0], [-1.0], [0.0], [0.0]])) | |
def get_right_vectors(pose_device_to_world): | |
return np.matmul(pose_device_to_world, np.array([[1.0], [0.0], [0.0], [0.0]])) | |
def read_traj(traj_path): | |
quaternions = [] | |
poses = [] | |
timestamps = [] | |
poses_p_to_w = [] | |
with open(traj_path) as f: | |
traj_lines = f.readlines() | |
for line in traj_lines: | |
tokens = line.split() | |
assert len(tokens) == 7 | |
traj_timestamp = float(tokens[0]) | |
timestamps_decimal_value = value_to_decimal(traj_timestamp, 3) | |
timestamps.append(float(timestamps_decimal_value)) # for spline interpolation | |
angle_axis = [float(tokens[1]), float(tokens[2]), float(tokens[3])] | |
r_w_to_p, _ = cv2.Rodrigues(np.asarray(angle_axis)) | |
t_w_to_p = np.asarray([float(tokens[4]), float(tokens[5]), float(tokens[6])]) | |
pose_w_to_p = np.eye(4) | |
pose_w_to_p[:3, :3] = r_w_to_p | |
pose_w_to_p[:3, 3] = t_w_to_p | |
pose_p_to_w = np.linalg.inv(pose_w_to_p) | |
r_p_to_w_as_quat = quaternion.from_rotation_matrix(pose_p_to_w[:3, :3]) | |
t_p_to_w = pose_p_to_w[:3, 3] | |
poses_p_to_w.append(pose_p_to_w) | |
poses.append(t_p_to_w) | |
quaternions.append(r_p_to_w_as_quat) | |
return timestamps, poses, quaternions, poses_p_to_w | |
def main(rootdir, pairsdir, outdir): | |
os.makedirs(outdir, exist_ok=True) | |
subdirs = ['Test', 'Training'] | |
for subdir in subdirs: | |
if not osp.isdir(osp.join(rootdir, subdir)): | |
continue | |
# STEP 1: list all scenes | |
outsubdir = osp.join(outdir, subdir) | |
os.makedirs(outsubdir, exist_ok=True) | |
listfile = osp.join(pairsdir, subdir, 'scene_list.json') | |
with open(listfile, 'r') as f: | |
scene_dirs = json.load(f) | |
valid_scenes = [] | |
for scene_subdir in scene_dirs: | |
out_scene_subdir = osp.join(outsubdir, scene_subdir) | |
os.makedirs(out_scene_subdir, exist_ok=True) | |
scene_dir = osp.join(rootdir, subdir, scene_subdir) | |
depth_dir = osp.join(scene_dir, 'lowres_depth') | |
rgb_dir = osp.join(scene_dir, 'vga_wide') | |
intrinsics_dir = osp.join(scene_dir, 'vga_wide_intrinsics') | |
traj_path = osp.join(scene_dir, 'lowres_wide.traj') | |
# STEP 2: read selected_pairs.npz | |
selected_pairs_path = osp.join(pairsdir, subdir, scene_subdir, 'selected_pairs.npz') | |
selected_npz = np.load(selected_pairs_path) | |
selection, pairs = selected_npz['selection'], selected_npz['pairs'] | |
selected_sky_direction_scene = str(selected_npz['sky_direction_scene'][0]) | |
if len(selection) == 0 or len(pairs) == 0: | |
# not a valid scene | |
continue | |
valid_scenes.append(scene_subdir) | |
# STEP 3: parse the scene and export the list of valid (K, pose, rgb, depth) and convert images | |
scene_metadata_path = osp.join(out_scene_subdir, 'scene_metadata.npz') | |
if osp.isfile(scene_metadata_path): | |
continue | |
else: | |
print(f'parsing {scene_subdir}') | |
# loads traj | |
timestamps, poses, quaternions, poses_cam_to_world = read_traj(traj_path) | |
poses = np.array(poses) | |
quaternions = np.array(quaternions, dtype=np.quaternion) | |
quaternions = quaternion.unflip_rotors(quaternions) | |
timestamps = np.array(timestamps) | |
selected_images = [(basename, basename.split(".png")[0].split("_")[1]) for basename in selection] | |
timestamps_selected = [float(frame_id) for _, frame_id in selected_images] | |
sky_direction_scene, trajectories, intrinsics, images = convert_scene_metadata(scene_subdir, | |
intrinsics_dir, | |
timestamps, | |
quaternions, | |
poses, | |
poses_cam_to_world, | |
selected_images, | |
timestamps_selected) | |
assert selected_sky_direction_scene == sky_direction_scene | |
os.makedirs(os.path.join(out_scene_subdir, 'vga_wide'), exist_ok=True) | |
os.makedirs(os.path.join(out_scene_subdir, 'lowres_depth'), exist_ok=True) | |
assert isinstance(sky_direction_scene, str) | |
for basename in images: | |
img_out = os.path.join(out_scene_subdir, 'vga_wide', basename.replace('.png', '.jpg')) | |
depth_out = os.path.join(out_scene_subdir, 'lowres_depth', basename) | |
if osp.isfile(img_out) and osp.isfile(depth_out): | |
continue | |
vga_wide_path = osp.join(rgb_dir, basename) | |
depth_path = osp.join(depth_dir, basename) | |
img = Image.open(vga_wide_path) | |
depth = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED) | |
# rotate the image | |
if sky_direction_scene == 'RIGHT': | |
try: | |
img = img.transpose(Image.Transpose.ROTATE_90) | |
except Exception: | |
img = img.transpose(Image.ROTATE_90) | |
depth = cv2.rotate(depth, cv2.ROTATE_90_COUNTERCLOCKWISE) | |
elif sky_direction_scene == 'LEFT': | |
try: | |
img = img.transpose(Image.Transpose.ROTATE_270) | |
except Exception: | |
img = img.transpose(Image.ROTATE_270) | |
depth = cv2.rotate(depth, cv2.ROTATE_90_CLOCKWISE) | |
elif sky_direction_scene == 'DOWN': | |
try: | |
img = img.transpose(Image.Transpose.ROTATE_180) | |
except Exception: | |
img = img.transpose(Image.ROTATE_180) | |
depth = cv2.rotate(depth, cv2.ROTATE_180) | |
W, H = img.size | |
if not osp.isfile(img_out): | |
img.save(img_out) | |
depth = cv2.resize(depth, (W, H), interpolation=cv2.INTER_NEAREST_EXACT) | |
if not osp.isfile(depth_out): # avoid destroying the base dataset when you mess up the paths | |
cv2.imwrite(depth_out, depth) | |
# save at the end | |
np.savez(scene_metadata_path, | |
trajectories=trajectories, | |
intrinsics=intrinsics, | |
images=images, | |
pairs=pairs) | |
outlistfile = osp.join(outsubdir, 'scene_list.json') | |
with open(outlistfile, 'w') as f: | |
json.dump(valid_scenes, f) | |
# STEP 5: concat all scene_metadata.npz into a single file | |
scene_data = {} | |
for scene_subdir in valid_scenes: | |
scene_metadata_path = osp.join(outsubdir, scene_subdir, 'scene_metadata.npz') | |
with np.load(scene_metadata_path) as data: | |
trajectories = data['trajectories'] | |
intrinsics = data['intrinsics'] | |
images = data['images'] | |
pairs = data['pairs'] | |
scene_data[scene_subdir] = {'trajectories': trajectories, | |
'intrinsics': intrinsics, | |
'images': images, | |
'pairs': pairs} | |
offset = 0 | |
counts = [] | |
scenes = [] | |
sceneids = [] | |
images = [] | |
intrinsics = [] | |
trajectories = [] | |
pairs = [] | |
for scene_idx, (scene_subdir, data) in enumerate(scene_data.items()): | |
num_imgs = data['images'].shape[0] | |
img_pairs = data['pairs'] | |
scenes.append(scene_subdir) | |
sceneids.extend([scene_idx] * num_imgs) | |
images.append(data['images']) | |
K = np.expand_dims(np.eye(3), 0).repeat(num_imgs, 0) | |
K[:, 0, 0] = [fx for _, _, fx, _, _, _ in data['intrinsics']] | |
K[:, 1, 1] = [fy for _, _, _, fy, _, _ in data['intrinsics']] | |
K[:, 0, 2] = [hw for _, _, _, _, hw, _ in data['intrinsics']] | |
K[:, 1, 2] = [hh for _, _, _, _, _, hh in data['intrinsics']] | |
intrinsics.append(K) | |
trajectories.append(data['trajectories']) | |
# offset pairs | |
img_pairs[:, 0:2] += offset | |
pairs.append(img_pairs) | |
counts.append(offset) | |
offset += num_imgs | |
images = np.concatenate(images, axis=0) | |
intrinsics = np.concatenate(intrinsics, axis=0) | |
trajectories = np.concatenate(trajectories, axis=0) | |
pairs = np.concatenate(pairs, axis=0) | |
np.savez(osp.join(outsubdir, 'all_metadata.npz'), | |
counts=counts, | |
scenes=scenes, | |
sceneids=sceneids, | |
images=images, | |
intrinsics=intrinsics, | |
trajectories=trajectories, | |
pairs=pairs) | |
def convert_scene_metadata(scene_subdir, intrinsics_dir, | |
timestamps, quaternions, poses, poses_cam_to_world, | |
selected_images, timestamps_selected): | |
# find scene orientation | |
sky_direction_scene, rotated_to_cam = find_scene_orientation(poses_cam_to_world) | |
# find/compute pose for selected timestamps | |
# most images have a valid timestamp / exact pose associated | |
timestamps_selected = np.array(timestamps_selected) | |
spline = interpolate.interp1d(timestamps, poses, kind='linear', axis=0) | |
interpolated_rotations = quaternion.squad(quaternions, timestamps, timestamps_selected) | |
interpolated_positions = spline(timestamps_selected) | |
trajectories = [] | |
intrinsics = [] | |
images = [] | |
for i, (basename, frame_id) in enumerate(selected_images): | |
intrinsic_fn = osp.join(intrinsics_dir, f"{scene_subdir}_{frame_id}.pincam") | |
if not osp.exists(intrinsic_fn): | |
intrinsic_fn = osp.join(intrinsics_dir, f"{scene_subdir}_{float(frame_id) - 0.001:.3f}.pincam") | |
if not osp.exists(intrinsic_fn): | |
intrinsic_fn = osp.join(intrinsics_dir, f"{scene_subdir}_{float(frame_id) + 0.001:.3f}.pincam") | |
assert osp.exists(intrinsic_fn) | |
w, h, fx, fy, hw, hh = np.loadtxt(intrinsic_fn) # PINHOLE | |
pose = np.eye(4) | |
pose[:3, :3] = quaternion.as_rotation_matrix(interpolated_rotations[i]) | |
pose[:3, 3] = interpolated_positions[i] | |
images.append(basename) | |
if sky_direction_scene == 'RIGHT' or sky_direction_scene == 'LEFT': | |
intrinsics.append([h, w, fy, fx, hh, hw]) # swapped intrinsics | |
else: | |
intrinsics.append([w, h, fx, fy, hw, hh]) | |
trajectories.append(pose @ rotated_to_cam) # pose_cam_to_world @ rotated_to_cam = rotated(cam) to world | |
return sky_direction_scene, trajectories, intrinsics, images | |
def find_scene_orientation(poses_cam_to_world): | |
if len(poses_cam_to_world) > 0: | |
up_vector = sum(get_up_vectors(p) for p in poses_cam_to_world) / len(poses_cam_to_world) | |
right_vector = sum(get_right_vectors(p) for p in poses_cam_to_world) / len(poses_cam_to_world) | |
up_world = np.array([[0.0], [0.0], [1.0], [0.0]]) | |
else: | |
up_vector = np.array([[0.0], [-1.0], [0.0], [0.0]]) | |
right_vector = np.array([[1.0], [0.0], [0.0], [0.0]]) | |
up_world = np.array([[0.0], [0.0], [1.0], [0.0]]) | |
# value between 0, 180 | |
device_up_to_world_up_angle = np.arccos(np.clip(np.dot(np.transpose(up_world), | |
up_vector), -1.0, 1.0)).item() * 180.0 / np.pi | |
device_right_to_world_up_angle = np.arccos(np.clip(np.dot(np.transpose(up_world), | |
right_vector), -1.0, 1.0)).item() * 180.0 / np.pi | |
up_closest_to_90 = abs(device_up_to_world_up_angle - 90.0) < abs(device_right_to_world_up_angle - 90.0) | |
if up_closest_to_90: | |
assert abs(device_up_to_world_up_angle - 90.0) < 45.0 | |
# LEFT | |
if device_right_to_world_up_angle > 90.0: | |
sky_direction_scene = 'LEFT' | |
cam_to_rotated_q = quaternion.from_rotation_vector([0.0, 0.0, math.pi / 2.0]) | |
else: | |
# note that in metadata.csv RIGHT does not exist, but again it's not accurate... | |
# well, turns out there are scenes oriented like this | |
# for example Training/41124801 | |
sky_direction_scene = 'RIGHT' | |
cam_to_rotated_q = quaternion.from_rotation_vector([0.0, 0.0, -math.pi / 2.0]) | |
else: | |
# right is close to 90 | |
assert abs(device_right_to_world_up_angle - 90.0) < 45.0 | |
if device_up_to_world_up_angle > 90.0: | |
sky_direction_scene = 'DOWN' | |
cam_to_rotated_q = quaternion.from_rotation_vector([0.0, 0.0, math.pi]) | |
else: | |
sky_direction_scene = 'UP' | |
cam_to_rotated_q = quaternion.quaternion(1, 0, 0, 0) | |
cam_to_rotated = np.eye(4) | |
cam_to_rotated[:3, :3] = quaternion.as_rotation_matrix(cam_to_rotated_q) | |
rotated_to_cam = np.linalg.inv(cam_to_rotated) | |
return sky_direction_scene, rotated_to_cam | |
if __name__ == '__main__': | |
parser = get_parser() | |
args = parser.parse_args() | |
main(args.arkitscenes_dir, args.precomputed_pairs, args.output_dir) | |