Realcat
add: mast3r
f90241e
raw
history blame
15.7 kB
#!/usr/bin/env python3
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Script to pre-process the scannet++ dataset.
# Usage:
# python3 datasets_preprocess/preprocess_scannetpp.py --scannetpp_dir /path/to/scannetpp --precomputed_pairs /path/to/scannetpp_pairs --pyopengl-platform egl
# --------------------------------------------------------
import os
import argparse
import os.path as osp
import re
from tqdm import tqdm
import json
from scipy.spatial.transform import Rotation
import pyrender
import trimesh
import trimesh.exchange.ply
import numpy as np
import cv2
import PIL.Image as Image
from dust3r.datasets.utils.cropping import rescale_image_depthmap
import dust3r.utils.geometry as geometry
inv = np.linalg.inv
norm = np.linalg.norm
REGEXPR_DSLR = re.compile(r'^DSC(?P<frameid>\d+).JPG$')
REGEXPR_IPHONE = re.compile(r'frame_(?P<frameid>\d+).jpg$')
DEBUG_VIZ = None # 'iou'
if DEBUG_VIZ is not None:
import matplotlib.pyplot as plt # noqa
OPENGL_TO_OPENCV = np.float32([[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1]])
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--scannetpp_dir', required=True)
parser.add_argument('--precomputed_pairs', required=True)
parser.add_argument('--output_dir', default='data/scannetpp_processed')
parser.add_argument('--target_resolution', default=920, type=int, help="images resolution")
parser.add_argument('--pyopengl-platform', type=str, default='', help='PyOpenGL env variable')
return parser
def pose_from_qwxyz_txyz(elems):
qw, qx, qy, qz, tx, ty, tz = map(float, elems)
pose = np.eye(4)
pose[:3, :3] = Rotation.from_quat((qx, qy, qz, qw)).as_matrix()
pose[:3, 3] = (tx, ty, tz)
return np.linalg.inv(pose) # returns cam2world
def get_frame_number(name, cam_type='dslr'):
if cam_type == 'dslr':
regex_expr = REGEXPR_DSLR
elif cam_type == 'iphone':
regex_expr = REGEXPR_IPHONE
else:
raise NotImplementedError(f'wrong {cam_type=} for get_frame_number')
matches = re.match(regex_expr, name)
return matches['frameid']
def load_sfm(sfm_dir, cam_type='dslr'):
# load cameras
with open(osp.join(sfm_dir, 'cameras.txt'), 'r') as f:
raw = f.read().splitlines()[3:] # skip header
intrinsics = {}
for camera in tqdm(raw, position=1, leave=False):
camera = camera.split(' ')
intrinsics[int(camera[0])] = [camera[1]] + [float(cam) for cam in camera[2:]]
# load images
with open(os.path.join(sfm_dir, 'images.txt'), 'r') as f:
raw = f.read().splitlines()
raw = [line for line in raw if not line.startswith('#')] # skip header
img_idx = {}
img_infos = {}
for image, points in tqdm(zip(raw[0::2], raw[1::2]), total=len(raw) // 2, position=1, leave=False):
image = image.split(' ')
points = points.split(' ')
idx = image[0]
img_name = image[-1]
assert img_name not in img_idx, 'duplicate db image: ' + img_name
img_idx[img_name] = idx # register image name
current_points2D = {int(i): (float(x), float(y))
for i, x, y in zip(points[2::3], points[0::3], points[1::3]) if i != '-1'}
img_infos[idx] = dict(intrinsics=intrinsics[int(image[-2])],
path=img_name,
frame_id=get_frame_number(img_name, cam_type),
cam_to_world=pose_from_qwxyz_txyz(image[1: -2]),
sparse_pts2d=current_points2D)
# load 3D points
with open(os.path.join(sfm_dir, 'points3D.txt'), 'r') as f:
raw = f.read().splitlines()
raw = [line for line in raw if not line.startswith('#')] # skip header
points3D = {}
observations = {idx: [] for idx in img_infos.keys()}
for point in tqdm(raw, position=1, leave=False):
point = point.split()
point_3d_idx = int(point[0])
points3D[point_3d_idx] = tuple(map(float, point[1:4]))
if len(point) > 8:
for idx, point_2d_idx in zip(point[8::2], point[9::2]):
observations[idx].append((point_3d_idx, int(point_2d_idx)))
return img_idx, img_infos, points3D, observations
def subsample_img_infos(img_infos, num_images, allowed_name_subset=None):
img_infos_val = [(idx, val) for idx, val in img_infos.items()]
if allowed_name_subset is not None:
img_infos_val = [(idx, val) for idx, val in img_infos_val if val['path'] in allowed_name_subset]
if len(img_infos_val) > num_images:
img_infos_val = sorted(img_infos_val, key=lambda x: x[1]['frame_id'])
kept_idx = np.round(np.linspace(0, len(img_infos_val) - 1, num_images)).astype(int).tolist()
img_infos_val = [img_infos_val[idx] for idx in kept_idx]
return {idx: val for idx, val in img_infos_val}
def undistort_images(intrinsics, rgb, mask):
camera_type = intrinsics[0]
width = int(intrinsics[1])
height = int(intrinsics[2])
fx = intrinsics[3]
fy = intrinsics[4]
cx = intrinsics[5]
cy = intrinsics[6]
distortion = np.array(intrinsics[7:])
K = np.zeros([3, 3])
K[0, 0] = fx
K[0, 2] = cx
K[1, 1] = fy
K[1, 2] = cy
K[2, 2] = 1
K = geometry.colmap_to_opencv_intrinsics(K)
if camera_type == "OPENCV_FISHEYE":
assert len(distortion) == 4
new_K = cv2.fisheye.estimateNewCameraMatrixForUndistortRectify(
K,
distortion,
(width, height),
np.eye(3),
balance=0.0,
)
# Make the cx and cy to be the center of the image
new_K[0, 2] = width / 2.0
new_K[1, 2] = height / 2.0
map1, map2 = cv2.fisheye.initUndistortRectifyMap(K, distortion, np.eye(3), new_K, (width, height), cv2.CV_32FC1)
else:
new_K, _ = cv2.getOptimalNewCameraMatrix(K, distortion, (width, height), 1, (width, height), True)
map1, map2 = cv2.initUndistortRectifyMap(K, distortion, np.eye(3), new_K, (width, height), cv2.CV_32FC1)
undistorted_image = cv2.remap(rgb, map1, map2, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101)
undistorted_mask = cv2.remap(mask, map1, map2, interpolation=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT, borderValue=255)
K = geometry.opencv_to_colmap_intrinsics(K)
return width, height, new_K, undistorted_image, undistorted_mask
def process_scenes(root, pairsdir, output_dir, target_resolution):
os.makedirs(output_dir, exist_ok=True)
# default values from
# https://github.com/scannetpp/scannetpp/blob/main/common/configs/render.yml
znear = 0.05
zfar = 20.0
listfile = osp.join(pairsdir, 'scene_list.json')
with open(listfile, 'r') as f:
scenes = json.load(f)
# for each of these, we will select some dslr images and some iphone images
# we will undistort them and render their depth
renderer = pyrender.OffscreenRenderer(0, 0)
for scene in tqdm(scenes, position=0, leave=True):
data_dir = os.path.join(root, 'data', scene)
dir_dslr = os.path.join(data_dir, 'dslr')
dir_iphone = os.path.join(data_dir, 'iphone')
dir_scans = os.path.join(data_dir, 'scans')
assert os.path.isdir(data_dir) and os.path.isdir(dir_dslr) \
and os.path.isdir(dir_iphone) and os.path.isdir(dir_scans)
output_dir_scene = os.path.join(output_dir, scene)
scene_metadata_path = osp.join(output_dir_scene, 'scene_metadata.npz')
if osp.isfile(scene_metadata_path):
continue
pairs_dir_scene = os.path.join(pairsdir, scene)
pairs_dir_scene_selected_pairs = os.path.join(pairs_dir_scene, 'selected_pairs.npz')
assert osp.isfile(pairs_dir_scene_selected_pairs)
selected_npz = np.load(pairs_dir_scene_selected_pairs)
selection, pairs = selected_npz['selection'], selected_npz['pairs']
# set up the output paths
output_dir_scene_rgb = os.path.join(output_dir_scene, 'images')
output_dir_scene_depth = os.path.join(output_dir_scene, 'depth')
os.makedirs(output_dir_scene_rgb, exist_ok=True)
os.makedirs(output_dir_scene_depth, exist_ok=True)
ply_path = os.path.join(dir_scans, 'mesh_aligned_0.05.ply')
sfm_dir_dslr = os.path.join(dir_dslr, 'colmap')
rgb_dir_dslr = os.path.join(dir_dslr, 'resized_images')
mask_dir_dslr = os.path.join(dir_dslr, 'resized_anon_masks')
sfm_dir_iphone = os.path.join(dir_iphone, 'colmap')
rgb_dir_iphone = os.path.join(dir_iphone, 'rgb')
mask_dir_iphone = os.path.join(dir_iphone, 'rgb_masks')
# load the mesh
with open(ply_path, 'rb') as f:
mesh_kwargs = trimesh.exchange.ply.load_ply(f)
mesh_scene = trimesh.Trimesh(**mesh_kwargs)
# read colmap reconstruction, we will only use the intrinsics and pose here
img_idx_dslr, img_infos_dslr, points3D_dslr, observations_dslr = load_sfm(sfm_dir_dslr, cam_type='dslr')
dslr_paths = {
"in_colmap": sfm_dir_dslr,
"in_rgb": rgb_dir_dslr,
"in_mask": mask_dir_dslr,
}
img_idx_iphone, img_infos_iphone, points3D_iphone, observations_iphone = load_sfm(
sfm_dir_iphone, cam_type='iphone')
iphone_paths = {
"in_colmap": sfm_dir_iphone,
"in_rgb": rgb_dir_iphone,
"in_mask": mask_dir_iphone,
}
mesh = pyrender.Mesh.from_trimesh(mesh_scene, smooth=False)
pyrender_scene = pyrender.Scene()
pyrender_scene.add(mesh)
selection_dslr = [imgname + '.JPG' for imgname in selection if imgname.startswith('DSC')]
selection_iphone = [imgname + '.jpg' for imgname in selection if imgname.startswith('frame_')]
# resize the image to a more manageable size and render depth
for selection_cam, img_idx, img_infos, paths_data in [(selection_dslr, img_idx_dslr, img_infos_dslr, dslr_paths),
(selection_iphone, img_idx_iphone, img_infos_iphone, iphone_paths)]:
rgb_dir = paths_data['in_rgb']
mask_dir = paths_data['in_mask']
for imgname in tqdm(selection_cam, position=1, leave=False):
imgidx = img_idx[imgname]
img_infos_idx = img_infos[imgidx]
rgb = np.array(Image.open(os.path.join(rgb_dir, img_infos_idx['path'])))
mask = np.array(Image.open(os.path.join(mask_dir, img_infos_idx['path'][:-3] + 'png')))
_, _, K, rgb, mask = undistort_images(img_infos_idx['intrinsics'], rgb, mask)
# rescale_image_depthmap assumes opencv intrinsics
intrinsics = geometry.colmap_to_opencv_intrinsics(K)
image, mask, intrinsics = rescale_image_depthmap(
rgb, mask, intrinsics, (target_resolution, target_resolution * 3.0 / 4))
W, H = image.size
intrinsics = geometry.opencv_to_colmap_intrinsics(intrinsics)
# update inpace img_infos_idx
img_infos_idx['intrinsics'] = intrinsics
rgb_outpath = os.path.join(output_dir_scene_rgb, img_infos_idx['path'][:-3] + 'jpg')
image.save(rgb_outpath)
depth_outpath = os.path.join(output_dir_scene_depth, img_infos_idx['path'][:-3] + 'png')
# render depth image
renderer.viewport_width, renderer.viewport_height = W, H
fx, fy, cx, cy = intrinsics[0, 0], intrinsics[1, 1], intrinsics[0, 2], intrinsics[1, 2]
camera = pyrender.camera.IntrinsicsCamera(fx, fy, cx, cy, znear=znear, zfar=zfar)
camera_node = pyrender_scene.add(camera, pose=img_infos_idx['cam_to_world'] @ OPENGL_TO_OPENCV)
depth = renderer.render(pyrender_scene, flags=pyrender.RenderFlags.DEPTH_ONLY)
pyrender_scene.remove_node(camera_node) # dont forget to remove camera
depth = (depth * 1000).astype('uint16')
# invalidate depth from mask before saving
depth_mask = (mask < 255)
depth[depth_mask] = 0
Image.fromarray(depth).save(depth_outpath)
trajectories = []
intrinsics = []
for imgname in selection:
if imgname.startswith('DSC'):
imgidx = img_idx_dslr[imgname + '.JPG']
img_infos_idx = img_infos_dslr[imgidx]
elif imgname.startswith('frame_'):
imgidx = img_idx_iphone[imgname + '.jpg']
img_infos_idx = img_infos_iphone[imgidx]
else:
raise ValueError('invalid image name')
intrinsics.append(img_infos_idx['intrinsics'])
trajectories.append(img_infos_idx['cam_to_world'])
intrinsics = np.stack(intrinsics, axis=0)
trajectories = np.stack(trajectories, axis=0)
# save metadata for this scene
np.savez(scene_metadata_path,
trajectories=trajectories,
intrinsics=intrinsics,
images=selection,
pairs=pairs)
del img_infos
del pyrender_scene
# concat all scene_metadata.npz into a single file
scene_data = {}
for scene_subdir in scenes:
scene_metadata_path = osp.join(output_dir, scene_subdir, 'scene_metadata.npz')
with np.load(scene_metadata_path) as data:
trajectories = data['trajectories']
intrinsics = data['intrinsics']
images = data['images']
pairs = data['pairs']
scene_data[scene_subdir] = {'trajectories': trajectories,
'intrinsics': intrinsics,
'images': images,
'pairs': pairs}
offset = 0
counts = []
scenes = []
sceneids = []
images = []
intrinsics = []
trajectories = []
pairs = []
for scene_idx, (scene_subdir, data) in enumerate(scene_data.items()):
num_imgs = data['images'].shape[0]
img_pairs = data['pairs']
scenes.append(scene_subdir)
sceneids.extend([scene_idx] * num_imgs)
images.append(data['images'])
intrinsics.append(data['intrinsics'])
trajectories.append(data['trajectories'])
# offset pairs
img_pairs[:, 0:2] += offset
pairs.append(img_pairs)
counts.append(offset)
offset += num_imgs
images = np.concatenate(images, axis=0)
intrinsics = np.concatenate(intrinsics, axis=0)
trajectories = np.concatenate(trajectories, axis=0)
pairs = np.concatenate(pairs, axis=0)
np.savez(osp.join(output_dir, 'all_metadata.npz'),
counts=counts,
scenes=scenes,
sceneids=sceneids,
images=images,
intrinsics=intrinsics,
trajectories=trajectories,
pairs=pairs)
print('all done')
if __name__ == '__main__':
parser = get_parser()
args = parser.parse_args()
if args.pyopengl_platform.strip():
os.environ['PYOPENGL_PLATFORM'] = args.pyopengl_platform
process_scenes(args.scannetpp_dir, args.precomputed_pairs, args.output_dir, args.target_resolution)