Spaces:
Running
Running
#!/usr/bin/env python3 | |
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# Preprocessing code for the WayMo Open dataset | |
# dataset at https://github.com/waymo-research/waymo-open-dataset | |
# 1) Accept the license | |
# 2) download all training/*.tfrecord files from Perception Dataset, version 1.4.2 | |
# 3) put all .tfrecord files in '/path/to/waymo_dir' | |
# 4) install the waymo_open_dataset package with | |
# `python3 -m pip install gcsfs waymo-open-dataset-tf-2-12-0==1.6.4` | |
# 5) execute this script as `python preprocess_waymo.py --waymo_dir /path/to/waymo_dir` | |
# -------------------------------------------------------- | |
import sys | |
import os | |
import os.path as osp | |
import shutil | |
import json | |
from tqdm import tqdm | |
import PIL.Image | |
import numpy as np | |
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" | |
import cv2 | |
import tensorflow.compat.v1 as tf | |
tf.enable_eager_execution() | |
import path_to_root # noqa | |
from dust3r.utils.geometry import geotrf, inv | |
from dust3r.utils.image import imread_cv2 | |
from dust3r.utils.parallel import parallel_processes as parallel_map | |
from dust3r.datasets.utils import cropping | |
from dust3r.viz import show_raw_pointcloud | |
def get_parser(): | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--waymo_dir', required=True) | |
parser.add_argument('--precomputed_pairs', required=True) | |
parser.add_argument('--output_dir', default='data/waymo_processed') | |
parser.add_argument('--workers', type=int, default=1) | |
return parser | |
def main(waymo_root, pairs_path, output_dir, workers=1): | |
extract_frames(waymo_root, output_dir, workers=workers) | |
make_crops(output_dir, workers=args.workers) | |
# make sure all pairs are there | |
with np.load(pairs_path) as data: | |
scenes = data['scenes'] | |
frames = data['frames'] | |
pairs = data['pairs'] # (array of (scene_id, img1_id, img2_id) | |
for scene_id, im1_id, im2_id in pairs: | |
for im_id in (im1_id, im2_id): | |
path = osp.join(output_dir, scenes[scene_id], frames[im_id] + '.jpg') | |
assert osp.isfile(path), f'Missing a file at {path=}\nDid you download all .tfrecord files?' | |
shutil.rmtree(osp.join(output_dir, 'tmp')) | |
print('Done! all data generated at', output_dir) | |
def _list_sequences(db_root): | |
print('>> Looking for sequences in', db_root) | |
res = sorted(f for f in os.listdir(db_root) if f.endswith('.tfrecord')) | |
print(f' found {len(res)} sequences') | |
return res | |
def extract_frames(db_root, output_dir, workers=8): | |
sequences = _list_sequences(db_root) | |
output_dir = osp.join(output_dir, 'tmp') | |
print('>> outputing result to', output_dir) | |
args = [(db_root, output_dir, seq) for seq in sequences] | |
parallel_map(process_one_seq, args, star_args=True, workers=workers) | |
def process_one_seq(db_root, output_dir, seq): | |
out_dir = osp.join(output_dir, seq) | |
os.makedirs(out_dir, exist_ok=True) | |
calib_path = osp.join(out_dir, 'calib.json') | |
if osp.isfile(calib_path): | |
return | |
try: | |
with tf.device('/CPU:0'): | |
calib, frames = extract_frames_one_seq(osp.join(db_root, seq)) | |
except RuntimeError: | |
print(f'/!\\ Error with sequence {seq} /!\\', file=sys.stderr) | |
return # nothing is saved | |
for f, (frame_name, views) in enumerate(tqdm(frames, leave=False)): | |
for cam_idx, view in views.items(): | |
img = PIL.Image.fromarray(view.pop('img')) | |
img.save(osp.join(out_dir, f'{f:05d}_{cam_idx}.jpg')) | |
np.savez(osp.join(out_dir, f'{f:05d}_{cam_idx}.npz'), **view) | |
with open(calib_path, 'w') as f: | |
json.dump(calib, f) | |
def extract_frames_one_seq(filename): | |
from waymo_open_dataset import dataset_pb2 as open_dataset | |
from waymo_open_dataset.utils import frame_utils | |
print('>> Opening', filename) | |
dataset = tf.data.TFRecordDataset(filename, compression_type='') | |
calib = None | |
frames = [] | |
for data in tqdm(dataset, leave=False): | |
frame = open_dataset.Frame() | |
frame.ParseFromString(bytearray(data.numpy())) | |
content = frame_utils.parse_range_image_and_camera_projection(frame) | |
range_images, camera_projections, _, range_image_top_pose = content | |
views = {} | |
frames.append((frame.context.name, views)) | |
# once in a sequence, read camera calibration info | |
if calib is None: | |
calib = [] | |
for cam in frame.context.camera_calibrations: | |
calib.append((cam.name, | |
dict(width=cam.width, | |
height=cam.height, | |
intrinsics=list(cam.intrinsic), | |
extrinsics=list(cam.extrinsic.transform)))) | |
# convert LIDAR to pointcloud | |
points, cp_points = frame_utils.convert_range_image_to_point_cloud( | |
frame, | |
range_images, | |
camera_projections, | |
range_image_top_pose) | |
# 3d points in vehicle frame. | |
points_all = np.concatenate(points, axis=0) | |
cp_points_all = np.concatenate(cp_points, axis=0) | |
# The distance between lidar points and vehicle frame origin. | |
cp_points_all_tensor = tf.constant(cp_points_all, dtype=tf.int32) | |
for i, image in enumerate(frame.images): | |
# select relevant 3D points for this view | |
mask = tf.equal(cp_points_all_tensor[..., 0], image.name) | |
cp_points_msk_tensor = tf.cast(tf.gather_nd(cp_points_all_tensor, tf.where(mask)), dtype=tf.float32) | |
pose = np.asarray(image.pose.transform).reshape(4, 4) | |
timestamp = image.pose_timestamp | |
rgb = tf.image.decode_jpeg(image.image).numpy() | |
pix = cp_points_msk_tensor[..., 1:3].numpy().round().astype(np.int16) | |
pts3d = points_all[mask.numpy()] | |
views[image.name] = dict(img=rgb, pose=pose, pixels=pix, pts3d=pts3d, timestamp=timestamp) | |
if not 'show full point cloud': | |
show_raw_pointcloud([v['pts3d'] for v in views.values()], [v['img'] for v in views.values()]) | |
return calib, frames | |
def make_crops(output_dir, workers=16, **kw): | |
tmp_dir = osp.join(output_dir, 'tmp') | |
sequences = _list_sequences(tmp_dir) | |
args = [(tmp_dir, output_dir, seq) for seq in sequences] | |
parallel_map(crop_one_seq, args, star_args=True, workers=workers, front_num=0) | |
def crop_one_seq(input_dir, output_dir, seq, resolution=512): | |
seq_dir = osp.join(input_dir, seq) | |
out_dir = osp.join(output_dir, seq) | |
if osp.isfile(osp.join(out_dir, '00100_1.jpg')): | |
return | |
os.makedirs(out_dir, exist_ok=True) | |
# load calibration file | |
try: | |
with open(osp.join(seq_dir, 'calib.json')) as f: | |
calib = json.load(f) | |
except IOError: | |
print(f'/!\\ Error: Missing calib.json in sequence {seq} /!\\', file=sys.stderr) | |
return | |
axes_transformation = np.array([ | |
[0, -1, 0, 0], | |
[0, 0, -1, 0], | |
[1, 0, 0, 0], | |
[0, 0, 0, 1]]) | |
cam_K = {} | |
cam_distortion = {} | |
cam_res = {} | |
cam_to_car = {} | |
for cam_idx, cam_info in calib: | |
cam_idx = str(cam_idx) | |
cam_res[cam_idx] = (W, H) = (cam_info['width'], cam_info['height']) | |
f1, f2, cx, cy, k1, k2, p1, p2, k3 = cam_info['intrinsics'] | |
cam_K[cam_idx] = np.asarray([(f1, 0, cx), (0, f2, cy), (0, 0, 1)]) | |
cam_distortion[cam_idx] = np.asarray([k1, k2, p1, p2, k3]) | |
cam_to_car[cam_idx] = np.asarray(cam_info['extrinsics']).reshape(4, 4) # cam-to-vehicle | |
frames = sorted(f[:-3] for f in os.listdir(seq_dir) if f.endswith('.jpg')) | |
# from dust3r.viz import SceneViz | |
# viz = SceneViz() | |
for frame in tqdm(frames, leave=False): | |
cam_idx = frame[-2] # cam index | |
assert cam_idx in '12345', f'bad {cam_idx=} in {frame=}' | |
data = np.load(osp.join(seq_dir, frame + 'npz')) | |
car_to_world = data['pose'] | |
W, H = cam_res[cam_idx] | |
# load depthmap | |
pos2d = data['pixels'].round().astype(np.uint16) | |
x, y = pos2d.T | |
pts3d = data['pts3d'] # already in the car frame | |
pts3d = geotrf(axes_transformation @ inv(cam_to_car[cam_idx]), pts3d) | |
# X=LEFT_RIGHT y=ALTITUDE z=DEPTH | |
# load image | |
image = imread_cv2(osp.join(seq_dir, frame + 'jpg')) | |
# downscale image | |
output_resolution = (resolution, 1) if W > H else (1, resolution) | |
image, _, intrinsics2 = cropping.rescale_image_depthmap(image, None, cam_K[cam_idx], output_resolution) | |
image.save(osp.join(out_dir, frame + 'jpg'), quality=80) | |
# save as an EXR file? yes it's smaller (and easier to load) | |
W, H = image.size | |
depthmap = np.zeros((H, W), dtype=np.float32) | |
pos2d = geotrf(intrinsics2 @ inv(cam_K[cam_idx]), pos2d).round().astype(np.int16) | |
x, y = pos2d.T | |
depthmap[y.clip(min=0, max=H - 1), x.clip(min=0, max=W - 1)] = pts3d[:, 2] | |
cv2.imwrite(osp.join(out_dir, frame + 'exr'), depthmap) | |
# save camera parametes | |
cam2world = car_to_world @ cam_to_car[cam_idx] @ inv(axes_transformation) | |
np.savez(osp.join(out_dir, frame + 'npz'), intrinsics=intrinsics2, | |
cam2world=cam2world, distortion=cam_distortion[cam_idx]) | |
# viz.add_rgbd(np.asarray(image), depthmap, intrinsics2, cam2world) | |
# viz.show() | |
if __name__ == '__main__': | |
parser = get_parser() | |
args = parser.parse_args() | |
main(args.waymo_dir, args.precomputed_pairs, args.output_dir, workers=args.workers) | |