Realcat
fix: eloftr
63f3cf2
raw
history blame
22.6 kB
# -*- coding: UTF-8 -*-
'''=================================================
@Project -> File pram -> sfd2
@IDE PyCharm
@Author fx221@cam.ac.uk
@Date 07/02/2024 14:53
=================================================='''
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
import torchvision.transforms as tvf
RGB_mean = [0.485, 0.456, 0.406]
RGB_std = [0.229, 0.224, 0.225]
norm_RGB = tvf.Compose([tvf.Normalize(mean=RGB_mean, std=RGB_std)])
def simple_nms(scores, nms_radius: int):
""" Fast Non-maximum suppression to remove nearby points """
assert (nms_radius >= 0)
def max_pool(x):
return torch.nn.functional.max_pool2d(
x, kernel_size=nms_radius * 2 + 1, stride=1, padding=nms_radius)
zeros = torch.zeros_like(scores)
max_mask = scores == max_pool(scores)
for _ in range(2):
supp_mask = max_pool(max_mask.float()) > 0
supp_scores = torch.where(supp_mask, zeros, scores)
new_max_mask = supp_scores == max_pool(supp_scores)
max_mask = max_mask | (new_max_mask & (~supp_mask))
return torch.where(max_mask, scores, zeros)
def remove_borders(keypoints, scores, border: int, height: int, width: int):
""" Removes keypoints too close to the border """
mask_h = (keypoints[:, 0] >= border) & (keypoints[:, 0] < (height - border))
mask_w = (keypoints[:, 1] >= border) & (keypoints[:, 1] < (width - border))
mask = mask_h & mask_w
return keypoints[mask], scores[mask]
def top_k_keypoints(keypoints, scores, k: int):
if k >= len(keypoints):
return keypoints, scores
scores, indices = torch.topk(scores, k, dim=0)
return keypoints[indices], scores
def sample_descriptors(keypoints, descriptors, s: int = 8):
""" Interpolate descriptors at keypoint locations """
b, c, h, w = descriptors.shape
keypoints = keypoints - s / 2 + 0.5
keypoints /= torch.tensor([(w * s - s / 2 - 0.5), (h * s - s / 2 - 0.5)],
).to(keypoints)[None]
keypoints = keypoints * 2 - 1 # normalize to (-1, 1)
descriptors = torch.nn.functional.grid_sample(
descriptors, keypoints.view(b, 1, -1, 2), mode='bilinear', align_corners=True)
descriptors = torch.nn.functional.normalize(
descriptors.reshape(b, c, -1), p=2, dim=1)
return descriptors
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
def conv(in_channels, out_channels, kernel_size=3, stride=1, padding=1, use_bn=False, groups=1, dilation=1):
if not use_bn:
return nn.Sequential(
nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, dilation=dilation),
nn.ReLU(inplace=True),
)
else:
return nn.Sequential(
nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, dilation=dilation),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
)
class ResBlock(nn.Module):
def __init__(self, inplanes, outplanes, stride=1, groups=32, dilation=1, norm_layer=None):
super(ResBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self.conv1 = conv1x1(inplanes, outplanes)
self.bn1 = norm_layer(outplanes)
self.conv2 = conv3x3(outplanes, outplanes, stride, groups, dilation)
self.bn2 = norm_layer(outplanes)
self.conv3 = conv1x1(outplanes, outplanes)
self.bn3 = norm_layer(outplanes)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out += identity
out = self.relu(out)
return out
class ResNet4x(nn.Module):
default_config = {
'conf_th': 0.005,
'remove_borders': 4,
'min_keypoints': 128,
'max_keypoints': 4096,
}
def __init__(self, inputdim=3, outdim=128, desc_compressor=None):
super().__init__()
self.outdim = outdim
self.desc_compressor = desc_compressor
d1, d2, d3, d4, d5, d6 = 64, 128, 256, 256, 256, 256
self.conv1a = conv(in_channels=inputdim, out_channels=d1, kernel_size=3, use_bn=True)
self.conv1b = conv(in_channels=d1, out_channels=d1, kernel_size=3, stride=2, use_bn=True)
self.conv2a = conv(in_channels=d1, out_channels=d2, kernel_size=3, use_bn=True)
self.conv2b = conv(in_channels=d2, out_channels=d2, kernel_size=3, stride=2, use_bn=True)
self.conv3a = conv(in_channels=d2, out_channels=d3, kernel_size=3, use_bn=True)
self.conv3b = conv(in_channels=d3, out_channels=d3, kernel_size=3, use_bn=True)
self.conv4 = nn.Sequential(
ResBlock(inplanes=256, outplanes=256, groups=32),
ResBlock(inplanes=256, outplanes=256, groups=32),
ResBlock(inplanes=256, outplanes=256, groups=32),
)
self.convPa = nn.Sequential(
torch.nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
torch.nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
)
self.convDa = nn.Sequential(
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
)
self.convPb = torch.nn.Conv2d(256, 65, kernel_size=1, stride=1, padding=0)
self.convDb = torch.nn.Conv2d(256, outdim, kernel_size=1, stride=1, padding=0)
def det(self, x):
out1a = self.conv1a(x)
out1b = self.conv1b(out1a)
out2a = self.conv2a(out1b)
out2b = self.conv2b(out2a)
out3a = self.conv3a(out2b)
out3b = self.conv3b(out3a)
out4 = self.conv4(out3b)
cPa = self.convPa(out4)
logits = self.convPb(cPa)
full_semi = torch.softmax(logits, dim=1)
semi = full_semi[:, :-1, :, :]
Hc, Wc = semi.size(2), semi.size(3)
score = semi.permute([0, 2, 3, 1])
score = score.view(score.size(0), Hc, Wc, 8, 8)
score = score.permute([0, 1, 3, 2, 4])
score = score.contiguous().view(score.size(0), Hc * 8, Wc * 8)
# Descriptor Head
cDa = self.convDa(out4)
desc = self.convDb(cDa)
desc = F.normalize(desc, dim=1)
return score, desc
def forward(self, batch):
out1a = self.conv1a(batch['image'])
out1b = self.conv1b(out1a)
out2a = self.conv2a(out1b)
out2b = self.conv2b(out2a)
out3a = self.conv3a(out2b)
out3b = self.conv3b(out3a)
out4 = self.conv4(out3b)
cPa = self.convPa(out4)
logits = self.convPb(cPa)
full_semi = torch.softmax(logits, dim=1)
semi = full_semi[:, :-1, :, :]
Hc, Wc = semi.size(2), semi.size(3)
score = semi.permute([0, 2, 3, 1])
score = score.view(score.size(0), Hc, Wc, 8, 8)
score = score.permute([0, 1, 3, 2, 4])
score = score.contiguous().view(score.size(0), Hc * 8, Wc * 8)
# Descriptor Head
cDa = self.convDa(out4)
desc = self.convDb(cDa)
desc = F.normalize(desc, dim=1)
return {
'dense_features': desc,
'scores': score,
'logits': logits,
'semi_map': semi,
}
def extract_patches(self, batch):
out1a = self.conv1a(batch['image'])
out1b = self.conv1b(out1a)
out2a = self.conv2a(out1b)
out2b = self.conv2b(out2a)
out3a = self.conv3a(out2b)
out3b = self.conv3b(out3a)
out4 = self.conv4(out3b)
cPa = self.convPa(out4)
logits = self.convPb(cPa)
full_semi = torch.softmax(logits, dim=1)
semi = full_semi[:, :-1, :, :]
Hc, Wc = semi.size(2), semi.size(3)
score = semi.permute([0, 2, 3, 1])
score = score.view(score.size(0), Hc, Wc, 8, 8)
score = score.permute([0, 1, 3, 2, 4])
score = score.contiguous().view(score.size(0), Hc * 8, Wc * 8)
# Descriptor Head
cDa = self.convDa(out4)
desc = self.convDb(cDa)
desc = F.normalize(desc, dim=1)
return {
'dense_features': desc,
'scores': score,
'logits': logits,
'semi_map': semi,
}
def extract_local_global(self, data,
config={
'conf_th': 0.005,
'remove_borders': 4,
'min_keypoints': 128,
'max_keypoints': 4096,
}
):
config = {**self.default_config, **config}
b, ic, ih, iw = data['image'].shape
out1a = self.conv1a(data['image'])
out1b = self.conv1b(out1a) # 64
out2a = self.conv2a(out1b)
out2b = self.conv2b(out2a) # 128
out3a = self.conv3a(out2b)
out3b = self.conv3b(out3a) # 256
out4 = self.conv4(out3b) # 256
cPa = self.convPa(out4)
logits = self.convPb(cPa)
full_semi = torch.softmax(logits, dim=1)
semi = full_semi[:, :-1, :, :]
Hc, Wc = semi.size(2), semi.size(3)
score = semi.permute([0, 2, 3, 1])
score = score.view(score.size(0), Hc, Wc, 8, 8)
score = score.permute([0, 1, 3, 2, 4])
score = score.contiguous().view(score.size(0), Hc * 8, Wc * 8)
if Hc * 8 != ih or Wc * 8 != iw:
score = F.interpolate(score.unsqueeze(1), size=[ih, iw], align_corners=True, mode='bilinear')
score = score.squeeze(1)
# extract keypoints
nms_scores = simple_nms(scores=score, nms_radius=4)
keypoints = [
torch.nonzero(s >= config['conf_th'])
for s in nms_scores]
scores = [s[tuple(k.t())] for s, k in zip(nms_scores, keypoints)]
if len(scores[0]) <= config['min_keypoints']:
keypoints = [
torch.nonzero(s >= config['conf_th'] * 0.5)
for s in nms_scores]
scores = [s[tuple(k.t())] for s, k in zip(nms_scores, keypoints)]
# Discard keypoints near the image borders
keypoints, scores = list(zip(*[
remove_borders(k, s, config['remove_borders'], ih, iw)
for k, s in zip(keypoints, scores)]))
# Keep the k keypoints with highest score
if config['max_keypoints'] >= 0:
keypoints, scores = list(zip(*[
top_k_keypoints(k, s, config['max_keypoints'])
for k, s in zip(keypoints, scores)]))
# Convert (h, w) to (x, y)
keypoints = [torch.flip(k, [1]).float() for k in keypoints]
# Descriptor Head
cDa = self.convDa(out4)
desc_map = self.convDb(cDa)
desc_map = F.normalize(desc_map, dim=1)
descriptors = [sample_descriptors(k[None], d[None], 4)[0]
for k, d in zip(keypoints, desc_map)]
return {
'score_map': score,
'desc_map': desc_map,
'mid_features': out4,
'global_descriptors': [out1b, out2b, out3b, out4],
'keypoints': keypoints,
'scores': scores,
'descriptors': descriptors,
}
def sample(self, score_map, semi_descs, kpts, s=4, norm_desc=True):
# print('sample: ', score_map.shape, semi_descs.shape, kpts.shape)
b, c, h, w = semi_descs.shape
norm_kpts = kpts - s / 2 + 0.5
norm_kpts = norm_kpts / torch.tensor([(w * s - s / 2 - 0.5), (h * s - s / 2 - 0.5)],
).to(norm_kpts)[None]
norm_kpts = norm_kpts * 2 - 1
# args = {'align_corners': True} if int(torch.__version__[2]) > 2 else {}
descriptors = torch.nn.functional.grid_sample(
semi_descs, norm_kpts.view(b, 1, -1, 2), mode='bilinear', align_corners=True)
if norm_desc:
descriptors = torch.nn.functional.normalize(
descriptors.reshape(b, c, -1), p=2, dim=1)
else:
descriptors = descriptors.reshape(b, c, -1)
# print('max: ', torch.min(kpts[:, 1].long()), torch.max(kpts[:, 1].long()), torch.min(kpts[:, 0].long()),
# torch.max(kpts[:, 0].long()))
scores = score_map[0, kpts[:, 1].long(), kpts[:, 0].long()]
return scores, descriptors.squeeze(0)
class DescriptorCompressor(nn.Module):
def __init__(self, inputdim: int, outdim: int):
super().__init__()
self.inputdim = inputdim
self.outdim = outdim
self.conv = nn.Conv1d(in_channels=inputdim, out_channels=outdim, kernel_size=1, padding=0, bias=True)
def forward(self, x):
# b, c, n = x.shape
out = self.conv(x)
out = F.normalize(out, p=2, dim=1)
return out
def extract_sfd2_return(model, img, conf_th=0.001,
mask=None,
topK=-1,
min_keypoints=0,
**kwargs):
old_bm = torch.backends.cudnn.benchmark
torch.backends.cudnn.benchmark = False # speedup
img = norm_RGB(img.squeeze())
img = img[None]
img = img.cuda()
B, one, H, W = img.shape
all_pts = []
all_descs = []
if 'scales' in kwargs.keys():
scales = kwargs.get('scales')
else:
scales = [1.0]
for s in scales:
if s == 1.0:
new_img = img
else:
nh = int(H * s)
nw = int(W * s)
new_img = F.interpolate(img, size=(nh, nw), mode='bilinear', align_corners=True)
nh, nw = new_img.shape[2:]
with torch.no_grad():
heatmap, coarse_desc = model.det(new_img)
# print("nh, nw, heatmap, desc: ", nh, nw, heatmap.shape, coarse_desc.shape)
if len(heatmap.size()) == 3:
heatmap = heatmap.unsqueeze(1)
if len(heatmap.size()) == 2:
heatmap = heatmap.unsqueeze(0)
heatmap = heatmap.unsqueeze(1)
# print(heatmap.shape)
if heatmap.size(2) != nh or heatmap.size(3) != nw:
heatmap = F.interpolate(heatmap, size=[nh, nw], mode='bilinear', align_corners=True)
conf_thresh = conf_th
nms_dist = 3
border_remove = 4
scores = simple_nms(heatmap, nms_radius=nms_dist)
keypoints = [
torch.nonzero(s > conf_thresh)
for s in scores]
scores = [s[tuple(k.t())] for s, k in zip(scores, keypoints)]
# print('scores in return: ', len(scores[0]))
# print(keypoints[0].shape)
keypoints = [torch.flip(k, [1]).float() for k in keypoints]
scores = scores[0].data.cpu().numpy().squeeze()
keypoints = keypoints[0].data.cpu().numpy().squeeze()
pts = keypoints.transpose()
pts[2, :] = scores
inds = np.argsort(pts[2, :])
pts = pts[:, inds[::-1]] # Sort by confidence.
# Remove points along border.
bord = border_remove
toremoveW = np.logical_or(pts[0, :] < bord, pts[0, :] >= (W - bord))
toremoveH = np.logical_or(pts[1, :] < bord, pts[1, :] >= (H - bord))
toremove = np.logical_or(toremoveW, toremoveH)
pts = pts[:, ~toremove]
# valid_idex = heatmap > conf_thresh
# valid_score = heatmap[valid_idex]
# """
# --- Process descriptor.
# coarse_desc = coarse_desc.data.cpu().numpy().squeeze()
D = coarse_desc.size(1)
if pts.shape[1] == 0:
desc = np.zeros((D, 0))
else:
if coarse_desc.size(2) == nh and coarse_desc.size(3) == nw:
desc = coarse_desc[:, :, pts[1, :], pts[0, :]]
desc = desc.data.cpu().numpy().reshape(D, -1)
else:
# Interpolate into descriptor map using 2D point locations.
samp_pts = torch.from_numpy(pts[:2, :].copy())
samp_pts[0, :] = (samp_pts[0, :] / (float(nw) / 2.)) - 1.
samp_pts[1, :] = (samp_pts[1, :] / (float(nh) / 2.)) - 1.
samp_pts = samp_pts.transpose(0, 1).contiguous()
samp_pts = samp_pts.view(1, 1, -1, 2)
samp_pts = samp_pts.float()
samp_pts = samp_pts.cuda()
desc = torch.nn.functional.grid_sample(coarse_desc, samp_pts, mode='bilinear', align_corners=True)
desc = desc.data.cpu().numpy().reshape(D, -1)
desc /= np.linalg.norm(desc, axis=0)[np.newaxis, :]
if pts.shape[1] == 0:
continue
# print(pts.shape, heatmap.shape, new_img.shape, img.shape, nw, nh, W, H)
pts[0, :] = pts[0, :] * W / nw
pts[1, :] = pts[1, :] * H / nh
all_pts.append(np.transpose(pts, [1, 0]))
all_descs.append(np.transpose(desc, [1, 0]))
all_pts = np.vstack(all_pts)
all_descs = np.vstack(all_descs)
torch.backends.cudnn.benchmark = old_bm
if all_pts.shape[0] == 0:
return None, None, None
keypoints = all_pts[:, 0:2]
scores = all_pts[:, 2]
descriptors = all_descs
if mask is not None:
# cv2.imshow("mask", mask)
# cv2.waitKey(0)
labels = []
others = []
keypoints_with_labels = []
scores_with_labels = []
descriptors_with_labels = []
keypoints_without_labels = []
scores_without_labels = []
descriptors_without_labels = []
id_img = np.int32(mask[:, :, 2]) * 256 * 256 + np.int32(mask[:, :, 1]) * 256 + np.int32(mask[:, :, 0])
# print(img.shape, id_img.shape)
for i in range(keypoints.shape[0]):
x = keypoints[i, 0]
y = keypoints[i, 1]
# print("x-y", x, y, int(x), int(y))
gid = id_img[int(y), int(x)]
if gid == 0:
keypoints_without_labels.append(keypoints[i])
scores_without_labels.append(scores[i])
descriptors_without_labels.append(descriptors[i])
others.append(0)
else:
keypoints_with_labels.append(keypoints[i])
scores_with_labels.append(scores[i])
descriptors_with_labels.append(descriptors[i])
labels.append(gid)
if topK > 0:
if topK <= len(keypoints_with_labels):
idxes = np.array(scores_with_labels, float).argsort()[::-1][:topK]
keypoints = np.array(keypoints_with_labels, float)[idxes]
scores = np.array(scores_with_labels, float)[idxes]
labels = np.array(labels, np.int32)[idxes]
descriptors = np.array(descriptors_with_labels, float)[idxes]
elif topK >= len(keypoints_with_labels) + len(keypoints_without_labels):
# keypoints = np.vstack([keypoints_with_labels, keypoints_without_labels])
# scores = np.vstack([scorescc_with_labels, scores_without_labels])
# descriptors = np.vstack([descriptors_with_labels, descriptors_without_labels])
# labels = np.vstack([labels, others])
keypoints = keypoints_with_labels
scores = scores_with_labels
descriptors = descriptors_with_labels
for i in range(len(others)):
keypoints.append(keypoints_without_labels[i])
scores.append(scores_without_labels[i])
descriptors.append(descriptors_without_labels[i])
labels.append(others[i])
else:
n = topK - len(keypoints_with_labels)
idxes = np.array(scores_without_labels, float).argsort()[::-1][:n]
keypoints = keypoints_with_labels
scores = scores_with_labels
descriptors = descriptors_with_labels
for i in idxes:
keypoints.append(keypoints_without_labels[i])
scores.append(scores_without_labels[i])
descriptors.append(descriptors_without_labels[i])
labels.append(others[i])
keypoints = np.array(keypoints, float)
descriptors = np.array(descriptors, float)
# print(keypoints.shape, descriptors.shape)
return {"keypoints": np.array(keypoints, float),
"descriptors": np.array(descriptors, float),
"scores": np.array(scores, np.float),
"labels": np.array(labels, np.int32),
}
else:
# print(topK)
if topK > 0:
idxes = np.array(scores, dtype=float).argsort()[::-1][:topK]
keypoints = np.array(keypoints[idxes], dtype=float)
scores = np.array(scores[idxes], dtype=float)
descriptors = np.array(descriptors[idxes], dtype=float)
keypoints = np.array(keypoints, dtype=float)
scores = np.array(scores, dtype=float)
descriptors = np.array(descriptors, dtype=float)
# print(keypoints.shape, descriptors.shape)
return {"keypoints": np.array(keypoints, dtype=float),
"descriptors": descriptors,
"scores": scores,
}
def load_sfd2(weight_path):
net = ResNet4x(inputdim=3, outdim=128)
net.load_state_dict(torch.load(weight_path, map_location='cpu')['state_dict'], strict=True)
# print('Load sfd2 from {:s}'.format(weight_path))
return net