Realcat
add: GIM (https://github.com/xuelunshen/gim)
4dfb78b
raw
history blame
12.2 kB
import torch
from sklearn.cluster import DBSCAN
from .. import get_model
from ..base_model import BaseModel
def sample_descriptors_corner_conv(keypoints, descriptors, s: int = 8):
"""Interpolate descriptors at keypoint locations"""
b, c, h, w = descriptors.shape
keypoints = keypoints / (keypoints.new_tensor([w, h]) * s)
keypoints = keypoints * 2 - 1 # normalize to (-1, 1)
descriptors = torch.nn.functional.grid_sample(
descriptors, keypoints.view(b, 1, -1, 2), mode="bilinear", align_corners=False
)
descriptors = torch.nn.functional.normalize(
descriptors.reshape(b, c, -1), p=2, dim=1
)
return descriptors
def lines_to_wireframe(
lines, line_scores, all_descs, s, nms_radius, force_num_lines, max_num_lines
):
"""Given a set of lines, their score and dense descriptors,
merge close-by endpoints and compute a wireframe defined by
its junctions and connectivity.
Returns:
junctions: list of [num_junc, 2] tensors listing all wireframe junctions
junc_scores: list of [num_junc] tensors with the junction score
junc_descs: list of [dim, num_junc] tensors with the junction descriptors
connectivity: list of [num_junc, num_junc] bool arrays with True when 2
junctions are connected
new_lines: the new set of [b_size, num_lines, 2, 2] lines
lines_junc_idx: a [b_size, num_lines, 2] tensor with the indices of the
junctions of each endpoint
num_true_junctions: a list of the number of valid junctions for each image
in the batch, i.e. before filling with random ones
"""
b_size, _, h, w = all_descs.shape
device = lines.device
h, w = h * s, w * s
endpoints = lines.reshape(b_size, -1, 2)
(
junctions,
junc_scores,
connectivity,
new_lines,
lines_junc_idx,
num_true_junctions,
) = ([], [], [], [], [], [])
for bs in range(b_size):
# Cluster the junctions that are close-by
db = DBSCAN(eps=nms_radius, min_samples=1).fit(endpoints[bs].cpu().numpy())
clusters = db.labels_
n_clusters = len(set(clusters))
num_true_junctions.append(n_clusters)
# Compute the average junction and score for each cluster
clusters = torch.tensor(clusters, dtype=torch.long, device=device)
new_junc = torch.zeros(n_clusters, 2, dtype=torch.float, device=device)
new_junc.scatter_reduce_(
0,
clusters[:, None].repeat(1, 2),
endpoints[bs],
reduce="mean",
include_self=False,
)
junctions.append(new_junc)
new_scores = torch.zeros(n_clusters, dtype=torch.float, device=device)
new_scores.scatter_reduce_(
0,
clusters,
torch.repeat_interleave(line_scores[bs], 2),
reduce="mean",
include_self=False,
)
junc_scores.append(new_scores)
# Compute the new lines
new_lines.append(junctions[-1][clusters].reshape(-1, 2, 2))
lines_junc_idx.append(clusters.reshape(-1, 2))
if force_num_lines:
# Add random junctions (with no connectivity)
missing = max_num_lines * 2 - len(junctions[-1])
junctions[-1] = torch.cat(
[
junctions[-1],
torch.rand(missing, 2).to(lines)
* lines.new_tensor([[w - 1, h - 1]]),
],
dim=0,
)
junc_scores[-1] = torch.cat(
[junc_scores[-1], torch.zeros(missing).to(lines)], dim=0
)
junc_connect = torch.eye(max_num_lines * 2, dtype=torch.bool, device=device)
pairs = clusters.reshape(-1, 2) # these pairs are connected by a line
junc_connect[pairs[:, 0], pairs[:, 1]] = True
junc_connect[pairs[:, 1], pairs[:, 0]] = True
connectivity.append(junc_connect)
else:
# Compute the junction connectivity
junc_connect = torch.eye(n_clusters, dtype=torch.bool, device=device)
pairs = clusters.reshape(-1, 2) # these pairs are connected by a line
junc_connect[pairs[:, 0], pairs[:, 1]] = True
junc_connect[pairs[:, 1], pairs[:, 0]] = True
connectivity.append(junc_connect)
junctions = torch.stack(junctions, dim=0)
new_lines = torch.stack(new_lines, dim=0)
lines_junc_idx = torch.stack(lines_junc_idx, dim=0)
# Interpolate the new junction descriptors
junc_descs = sample_descriptors_corner_conv(junctions, all_descs, s).mT
return (
junctions,
junc_scores,
junc_descs,
connectivity,
new_lines,
lines_junc_idx,
num_true_junctions,
)
class WireframeExtractor(BaseModel):
default_conf = {
"point_extractor": {
"name": None,
"trainable": False,
"dense_outputs": True,
"max_num_keypoints": None,
"force_num_keypoints": False,
},
"line_extractor": {
"name": None,
"trainable": False,
"max_num_lines": None,
"force_num_lines": False,
"min_length": 15,
},
"wireframe_params": {
"merge_points": True,
"merge_line_endpoints": True,
"nms_radius": 3,
},
}
required_data_keys = ["image"]
def _init(self, conf):
self.point_extractor = get_model(self.conf.point_extractor.name)(
self.conf.point_extractor
)
self.line_extractor = get_model(self.conf.line_extractor.name)(
self.conf.line_extractor
)
def _forward(self, data):
b_size, _, h, w = data["image"].shape
device = data["image"].device
if (
not self.conf.point_extractor.force_num_keypoints
or not self.conf.line_extractor.force_num_lines
):
assert b_size == 1, "Only batch size of 1 accepted for non padded inputs"
# Line detection
pred = self.line_extractor(data)
if pred["line_scores"].shape[-1] != 0:
pred["line_scores"] /= pred["line_scores"].max(dim=1)[0][:, None] + 1e-8
# Keypoint prediction
pred = {**pred, **self.point_extractor(data)}
assert (
"dense_descriptors" in pred
), "The KP extractor should return dense descriptors"
s_desc = data["image"].shape[2] // pred["dense_descriptors"].shape[2]
# Remove keypoints that are too close to line endpoints
if self.conf.wireframe_params.merge_points:
line_endpts = pred["lines"].reshape(b_size, -1, 2)
dist_pt_lines = torch.norm(
pred["keypoints"][:, :, None] - line_endpts[:, None], dim=-1
)
# For each keypoint, mark it as valid or to remove
pts_to_remove = torch.any(
dist_pt_lines < self.conf.wireframe_params.nms_radius, dim=2
)
if self.conf.point_extractor.force_num_keypoints:
# Replace the points with random ones
num_to_remove = pts_to_remove.int().sum().item()
pred["keypoints"][pts_to_remove] = torch.rand(
num_to_remove, 2, device=device
) * pred["keypoints"].new_tensor([[w - 1, h - 1]])
pred["keypoint_scores"][pts_to_remove] = 0
for bs in range(b_size):
descrs = sample_descriptors_corner_conv(
pred["keypoints"][bs][pts_to_remove[bs]][None],
pred["dense_descriptors"][bs][None],
s_desc,
)
pred["descriptors"][bs][pts_to_remove[bs]] = descrs[0].T
else:
# Simply remove them (we assume batch_size = 1 here)
assert len(pred["keypoints"]) == 1
pred["keypoints"] = pred["keypoints"][0][~pts_to_remove[0]][None]
pred["keypoint_scores"] = pred["keypoint_scores"][0][~pts_to_remove[0]][
None
]
pred["descriptors"] = pred["descriptors"][0][~pts_to_remove[0]][None]
# Connect the lines together to form a wireframe
orig_lines = pred["lines"].clone()
if (
self.conf.wireframe_params.merge_line_endpoints
and len(pred["lines"][0]) > 0
):
# Merge first close-by endpoints to connect lines
(
line_points,
line_pts_scores,
line_descs,
line_association,
pred["lines"],
lines_junc_idx,
n_true_junctions,
) = lines_to_wireframe(
pred["lines"],
pred["line_scores"],
pred["dense_descriptors"],
s=s_desc,
nms_radius=self.conf.wireframe_params.nms_radius,
force_num_lines=self.conf.line_extractor.force_num_lines,
max_num_lines=self.conf.line_extractor.max_num_lines,
)
# Add the keypoints to the junctions and fill the rest with random keypoints
(all_points, all_scores, all_descs, pl_associativity) = [], [], [], []
for bs in range(b_size):
all_points.append(
torch.cat([line_points[bs], pred["keypoints"][bs]], dim=0)
)
all_scores.append(
torch.cat([line_pts_scores[bs], pred["keypoint_scores"][bs]], dim=0)
)
all_descs.append(
torch.cat([line_descs[bs], pred["descriptors"][bs]], dim=0)
)
associativity = torch.eye(
len(all_points[-1]), dtype=torch.bool, device=device
)
associativity[
: n_true_junctions[bs], : n_true_junctions[bs]
] = line_association[bs][: n_true_junctions[bs], : n_true_junctions[bs]]
pl_associativity.append(associativity)
all_points = torch.stack(all_points, dim=0)
all_scores = torch.stack(all_scores, dim=0)
all_descs = torch.stack(all_descs, dim=0)
pl_associativity = torch.stack(pl_associativity, dim=0)
else:
# Lines are independent
all_points = torch.cat(
[pred["lines"].reshape(b_size, -1, 2), pred["keypoints"]], dim=1
)
n_pts = all_points.shape[1]
num_lines = pred["lines"].shape[1]
n_true_junctions = [num_lines * 2] * b_size
all_scores = torch.cat(
[
torch.repeat_interleave(pred["line_scores"], 2, dim=1),
pred["keypoint_scores"],
],
dim=1,
)
line_descs = sample_descriptors_corner_conv(
pred["lines"].reshape(b_size, -1, 2), pred["dense_descriptors"], s_desc
).mT # [B, n_lines * 2, desc_dim]
all_descs = torch.cat([line_descs, pred["descriptors"]], dim=1)
pl_associativity = torch.eye(n_pts, dtype=torch.bool, device=device)[
None
].repeat(b_size, 1, 1)
lines_junc_idx = (
torch.arange(num_lines * 2, device=device)
.reshape(1, -1, 2)
.repeat(b_size, 1, 1)
)
del pred["dense_descriptors"] # Remove dense descriptors to save memory
torch.cuda.empty_cache()
pred["keypoints"] = all_points
pred["keypoint_scores"] = all_scores
pred["descriptors"] = all_descs
pred["pl_associativity"] = pl_associativity
pred["num_junctions"] = torch.tensor(n_true_junctions)
pred["orig_lines"] = orig_lines
pred["lines_junc_idx"] = lines_junc_idx
return pred
def loss(self, pred, data):
raise NotImplementedError
def metrics(self, _pred, _data):
return {}