Vincentqyw
fix: roma
4c12b36
raw
history blame
13.7 kB
import numpy as np
import torch
from pytlsd import lsd
from sklearn.cluster import DBSCAN
from .base_model import BaseModel
from .superpoint import SuperPoint, sample_descriptors
from ..geometry import warp_lines_torch
def lines_to_wireframe(lines, line_scores, all_descs, conf):
"""Given a set of lines, their score and dense descriptors,
merge close-by endpoints and compute a wireframe defined by
its junctions and connectivity.
Returns:
junctions: list of [num_junc, 2] tensors listing all wireframe junctions
junc_scores: list of [num_junc] tensors with the junction score
junc_descs: list of [dim, num_junc] tensors with the junction descriptors
connectivity: list of [num_junc, num_junc] bool arrays with True when 2 junctions are connected
new_lines: the new set of [b_size, num_lines, 2, 2] lines
lines_junc_idx: a [b_size, num_lines, 2] tensor with the indices of the junctions of each endpoint
num_true_junctions: a list of the number of valid junctions for each image in the batch,
i.e. before filling with random ones
"""
b_size, _, _, _ = all_descs.shape
device = lines.device
endpoints = lines.reshape(b_size, -1, 2)
(
junctions,
junc_scores,
junc_descs,
connectivity,
new_lines,
lines_junc_idx,
num_true_junctions,
) = ([], [], [], [], [], [], [])
for bs in range(b_size):
# Cluster the junctions that are close-by
db = DBSCAN(eps=conf.nms_radius, min_samples=1).fit(endpoints[bs].cpu().numpy())
clusters = db.labels_
n_clusters = len(set(clusters))
num_true_junctions.append(n_clusters)
# Compute the average junction and score for each cluster
clusters = torch.tensor(clusters, dtype=torch.long, device=device)
new_junc = torch.zeros(n_clusters, 2, dtype=torch.float, device=device)
new_junc.scatter_reduce_(
0,
clusters[:, None].repeat(1, 2),
endpoints[bs],
reduce="mean",
include_self=False,
)
junctions.append(new_junc)
new_scores = torch.zeros(n_clusters, dtype=torch.float, device=device)
new_scores.scatter_reduce_(
0,
clusters,
torch.repeat_interleave(line_scores[bs], 2),
reduce="mean",
include_self=False,
)
junc_scores.append(new_scores)
# Compute the new lines
new_lines.append(junctions[-1][clusters].reshape(-1, 2, 2))
lines_junc_idx.append(clusters.reshape(-1, 2))
# Compute the junction connectivity
junc_connect = torch.eye(n_clusters, dtype=torch.bool, device=device)
pairs = clusters.reshape(-1, 2) # these pairs are connected by a line
junc_connect[pairs[:, 0], pairs[:, 1]] = True
junc_connect[pairs[:, 1], pairs[:, 0]] = True
connectivity.append(junc_connect)
# Interpolate the new junction descriptors
junc_descs.append(
sample_descriptors(junctions[-1][None], all_descs[bs : (bs + 1)], 8)[0]
)
new_lines = torch.stack(new_lines, dim=0)
lines_junc_idx = torch.stack(lines_junc_idx, dim=0)
return (
junctions,
junc_scores,
junc_descs,
connectivity,
new_lines,
lines_junc_idx,
num_true_junctions,
)
class SPWireframeDescriptor(BaseModel):
default_conf = {
"sp_params": {
"has_detector": True,
"has_descriptor": True,
"descriptor_dim": 256,
"trainable": False,
# Inference
"return_all": True,
"sparse_outputs": True,
"nms_radius": 4,
"detection_threshold": 0.005,
"max_num_keypoints": 1000,
"force_num_keypoints": True,
"remove_borders": 4,
},
"wireframe_params": {
"merge_points": True,
"merge_line_endpoints": True,
"nms_radius": 3,
"max_n_junctions": 500,
},
"max_n_lines": 250,
"min_length": 15,
}
required_data_keys = ["image"]
def _init(self, conf):
self.conf = conf
self.sp = SuperPoint(conf.sp_params)
def detect_lsd_lines(self, x, max_n_lines=None):
if max_n_lines is None:
max_n_lines = self.conf.max_n_lines
lines, scores, valid_lines = [], [], []
for b in range(len(x)):
# For each image on batch
img = (x[b].squeeze().cpu().numpy() * 255).astype(np.uint8)
if max_n_lines is None:
b_segs = lsd(img)
else:
for s in [0.3, 0.4, 0.5, 0.7, 0.8, 1.0]:
b_segs = lsd(img, scale=s)
if len(b_segs) >= max_n_lines:
break
segs_length = np.linalg.norm(b_segs[:, 2:4] - b_segs[:, 0:2], axis=1)
# Remove short lines
b_segs = b_segs[segs_length >= self.conf.min_length]
segs_length = segs_length[segs_length >= self.conf.min_length]
b_scores = b_segs[:, -1] * np.sqrt(segs_length)
# Take the most relevant segments with
indices = np.argsort(-b_scores)
if max_n_lines is not None:
indices = indices[:max_n_lines]
lines.append(torch.from_numpy(b_segs[indices, :4].reshape(-1, 2, 2)))
scores.append(torch.from_numpy(b_scores[indices]))
valid_lines.append(torch.ones_like(scores[-1], dtype=torch.bool))
lines = torch.stack(lines).to(x)
scores = torch.stack(scores).to(x)
valid_lines = torch.stack(valid_lines).to(x.device)
return lines, scores, valid_lines
def _forward(self, data):
b_size, _, h, w = data["image"].shape
device = data["image"].device
if not self.conf.sp_params.force_num_keypoints:
assert b_size == 1, "Only batch size of 1 accepted for non padded inputs"
# Line detection
if "lines" not in data or "line_scores" not in data:
if "original_img" in data:
# Detect more lines, because when projecting them to the image most of them will be discarded
lines, line_scores, valid_lines = self.detect_lsd_lines(
data["original_img"], self.conf.max_n_lines * 3
)
# Apply the same transformation that is applied in homography_adaptation
lines, valid_lines2 = warp_lines_torch(
lines, data["H"], False, data["image"].shape[-2:]
)
valid_lines = valid_lines & valid_lines2
lines[~valid_lines] = -1
line_scores[~valid_lines] = 0
# Re-sort the line segments to pick the ones that are inside the image and have bigger score
sorted_scores, sorting_indices = torch.sort(
line_scores, dim=-1, descending=True
)
line_scores = sorted_scores[:, : self.conf.max_n_lines]
sorting_indices = sorting_indices[:, : self.conf.max_n_lines]
lines = torch.take_along_dim(lines, sorting_indices[..., None, None], 1)
valid_lines = torch.take_along_dim(valid_lines, sorting_indices, 1)
else:
lines, line_scores, valid_lines = self.detect_lsd_lines(data["image"])
else:
lines, line_scores, valid_lines = (
data["lines"],
data["line_scores"],
data["valid_lines"],
)
if line_scores.shape[-1] != 0:
line_scores /= (
line_scores.new_tensor(1e-8) + line_scores.max(dim=1).values[:, None]
)
# SuperPoint prediction
pred = self.sp(data)
# Remove keypoints that are too close to line endpoints
if self.conf.wireframe_params.merge_points:
kp = pred["keypoints"]
line_endpts = lines.reshape(b_size, -1, 2)
dist_pt_lines = torch.norm(kp[:, :, None] - line_endpts[:, None], dim=-1)
# For each keypoint, mark it as valid or to remove
pts_to_remove = torch.any(
dist_pt_lines < self.conf.sp_params.nms_radius, dim=2
)
# Simply remove them (we assume batch_size = 1 here)
assert len(kp) == 1
pred["keypoints"] = pred["keypoints"][0][~pts_to_remove[0]][None]
pred["keypoint_scores"] = pred["keypoint_scores"][0][~pts_to_remove[0]][
None
]
pred["descriptors"] = pred["descriptors"][0].T[~pts_to_remove[0]].T[None]
# Connect the lines together to form a wireframe
orig_lines = lines.clone()
if self.conf.wireframe_params.merge_line_endpoints and len(lines[0]) > 0:
# Merge first close-by endpoints to connect lines
(
line_points,
line_pts_scores,
line_descs,
line_association,
lines,
lines_junc_idx,
num_true_junctions,
) = lines_to_wireframe(
lines,
line_scores,
pred["all_descriptors"],
conf=self.conf.wireframe_params,
)
# Add the keypoints to the junctions and fill the rest with random keypoints
(all_points, all_scores, all_descs, pl_associativity) = [], [], [], []
for bs in range(b_size):
all_points.append(
torch.cat([line_points[bs], pred["keypoints"][bs]], dim=0)
)
all_scores.append(
torch.cat([line_pts_scores[bs], pred["keypoint_scores"][bs]], dim=0)
)
all_descs.append(
torch.cat([line_descs[bs], pred["descriptors"][bs]], dim=1)
)
associativity = torch.eye(
len(all_points[-1]), dtype=torch.bool, device=device
)
associativity[
: num_true_junctions[bs], : num_true_junctions[bs]
] = line_association[bs][
: num_true_junctions[bs], : num_true_junctions[bs]
]
pl_associativity.append(associativity)
all_points = torch.stack(all_points, dim=0)
all_scores = torch.stack(all_scores, dim=0)
all_descs = torch.stack(all_descs, dim=0)
pl_associativity = torch.stack(pl_associativity, dim=0)
else:
# Lines are independent
all_points = torch.cat(
[lines.reshape(b_size, -1, 2), pred["keypoints"]], dim=1
)
n_pts = all_points.shape[1]
num_lines = lines.shape[1]
num_true_junctions = [num_lines * 2] * b_size
all_scores = torch.cat(
[
torch.repeat_interleave(line_scores, 2, dim=1),
pred["keypoint_scores"],
],
dim=1,
)
pred["line_descriptors"] = self.endpoints_pooling(
lines, pred["all_descriptors"], (h, w)
)
all_descs = torch.cat(
[
pred["line_descriptors"].reshape(
b_size, self.conf.sp_params.descriptor_dim, -1
),
pred["descriptors"],
],
dim=2,
)
pl_associativity = torch.eye(n_pts, dtype=torch.bool, device=device)[
None
].repeat(b_size, 1, 1)
lines_junc_idx = (
torch.arange(num_lines * 2, device=device)
.reshape(1, -1, 2)
.repeat(b_size, 1, 1)
)
del pred["all_descriptors"] # Remove dense descriptors to save memory
torch.cuda.empty_cache()
return {
"keypoints": all_points,
"keypoint_scores": all_scores,
"descriptors": all_descs,
"pl_associativity": pl_associativity,
"num_junctions": torch.tensor(num_true_junctions),
"lines": lines,
"orig_lines": orig_lines,
"lines_junc_idx": lines_junc_idx,
"line_scores": line_scores,
"valid_lines": valid_lines,
}
@staticmethod
def endpoints_pooling(segs, all_descriptors, img_shape):
assert segs.ndim == 4 and segs.shape[-2:] == (2, 2)
filter_shape = all_descriptors.shape[-2:]
scale_x = filter_shape[1] / img_shape[1]
scale_y = filter_shape[0] / img_shape[0]
scaled_segs = torch.round(
segs * torch.tensor([scale_x, scale_y]).to(segs)
).long()
scaled_segs[..., 0] = torch.clip(scaled_segs[..., 0], 0, filter_shape[1] - 1)
scaled_segs[..., 1] = torch.clip(scaled_segs[..., 1], 0, filter_shape[0] - 1)
line_descriptors = [
all_descriptors[
None,
b,
...,
torch.squeeze(b_segs[..., 1]),
torch.squeeze(b_segs[..., 0]),
]
for b, b_segs in enumerate(scaled_segs)
]
line_descriptors = torch.cat(line_descriptors)
return line_descriptors # Shape (1, 256, 308, 2)
def loss(self, pred, data):
raise NotImplementedError
def metrics(self, pred, data):
return {}