Realcat
update: gradio to 5.1.0
bffff04
raw
history blame
6.09 kB
import shutil
import sys
import tempfile
from pathlib import Path
from typing import Any, Dict, List
sys.path.append(str(Path(__file__).parents[1]))
from hloc import (
extract_features,
logger,
match_features,
pairs_from_retrieval,
reconstruction,
visualization,
)
try:
import pycolmap
except ImportError:
logger.warning("pycolmap not installed, some features may not work")
from ui.viz import fig2im
class SfmEngine:
def __init__(self, cfg: Dict[str, Any] = None):
self.cfg = cfg
if "outputs" in cfg and Path(cfg["outputs"]):
outputs = Path(cfg["outputs"])
outputs.mkdir(parents=True, exist_ok=True)
else:
outputs = tempfile.mkdtemp()
self.outputs = Path(outputs)
def call(
self,
key: str,
images: Path,
camera_model: str,
camera_params: List[float],
max_keypoints: int,
keypoint_threshold: float,
match_threshold: float,
ransac_threshold: int,
ransac_confidence: float,
ransac_max_iter: int,
scene_graph: bool,
global_feature: str,
top_k: int = 10,
mapper_refine_focal_length: bool = False,
mapper_refine_principle_points: bool = False,
mapper_refine_extra_params: bool = False,
):
"""
Call a list of functions to perform feature extraction, matching, and reconstruction.
Args:
key (str): The key to retrieve the matcher and feature models.
images (Path): The directory containing the images.
outputs (Path): The directory to store the outputs.
camera_model (str): The camera model.
camera_params (List[float]): The camera parameters.
max_keypoints (int): The maximum number of features.
match_threshold (float): The match threshold.
ransac_threshold (int): The RANSAC threshold.
ransac_confidence (float): The RANSAC confidence.
ransac_max_iter (int): The maximum number of RANSAC iterations.
scene_graph (bool): Whether to compute the scene graph.
global_feature (str): Whether to compute the global feature.
top_k (int): The number of image-pair to use.
mapper_refine_focal_length (bool): Whether to refine the focal length.
mapper_refine_principle_points (bool): Whether to refine the principle points.
mapper_refine_extra_params (bool): Whether to refine the extra parameters.
Returns:
Path: The directory containing the SfM results.
"""
if len(images) == 0:
logger.error(f"{images} does not exist.")
temp_images = Path(tempfile.mkdtemp())
# copy images
logger.info(f"Copying images to {temp_images}.")
for image in images:
shutil.copy(image, temp_images)
matcher_zoo = self.cfg["matcher_zoo"]
model = matcher_zoo[key]
match_conf = model["matcher"]
match_conf["model"]["max_keypoints"] = max_keypoints
match_conf["model"]["match_threshold"] = match_threshold
feature_conf = model["feature"]
feature_conf["model"]["max_keypoints"] = max_keypoints
feature_conf["model"]["keypoint_threshold"] = keypoint_threshold
# retrieval
retrieval_name = self.cfg.get("retrieval_name", "netvlad")
retrieval_conf = extract_features.confs[retrieval_name]
mapper_options = {
"ba_refine_extra_params": mapper_refine_extra_params,
"ba_refine_focal_length": mapper_refine_focal_length,
"ba_refine_principal_point": mapper_refine_principle_points,
"ba_local_max_num_iterations": 40,
"ba_local_max_refinements": 3,
"ba_global_max_num_iterations": 100,
# below 3 options are for individual/video data, for internet photos, they should be left
# default
"min_focal_length_ratio": 0.1,
"max_focal_length_ratio": 10,
"max_extra_param": 1e15,
}
sfm_dir = self.outputs / "sfm_{}".format(key)
sfm_pairs = self.outputs / "pairs-sfm.txt"
sfm_dir.mkdir(exist_ok=True, parents=True)
# extract features
retrieval_path = extract_features.main(
retrieval_conf, temp_images, self.outputs
)
pairs_from_retrieval.main(retrieval_path, sfm_pairs, num_matched=top_k)
feature_path = extract_features.main(
feature_conf, temp_images, self.outputs
)
# match features
match_path = match_features.main(
match_conf, sfm_pairs, feature_conf["output"], self.outputs
)
# reconstruction
already_sfm = False
if sfm_dir.exists():
try:
model = pycolmap.Reconstruction(str(sfm_dir))
already_sfm = True
except ValueError:
logger.info(f"sfm_dir not exists model: {sfm_dir}")
if not already_sfm:
model = reconstruction.main(
sfm_dir,
temp_images,
sfm_pairs,
feature_path,
match_path,
mapper_options=mapper_options,
)
vertices = []
for point3D_id, point3D in model.points3D.items():
vertices.append([point3D.xyz, point3D.color])
model_3d = sfm_dir / "points3D.obj"
with open(model_3d, "w") as f:
for p, c in vertices:
# Write vertex position
f.write("v {} {} {}\n".format(p[0], p[1], p[2]))
# Write vertex normal (color)
f.write(
"vn {} {} {}\n".format(
c[0] / 255.0, c[1] / 255.0, c[2] / 255.0
)
)
viz_2d = visualization.visualize_sfm_2d(
model, temp_images, color_by="visibility", n=2, dpi=300
)
return model_3d, fig2im(viz_2d) / 255.0