Vincentqyw
fix: roma
358ab8f
raw
history blame
6.73 kB
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import torch.nn.init as init
from .modules import InvertibleConv1x1
def initialize_weights(net_l, scale=1):
if not isinstance(net_l, list):
net_l = [net_l]
for net in net_l:
for m in net.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, a=0, mode="fan_in")
m.weight.data *= scale # for residual block
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
init.kaiming_normal_(m.weight, a=0, mode="fan_in")
m.weight.data *= scale
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias.data, 0.0)
def initialize_weights_xavier(net_l, scale=1):
if not isinstance(net_l, list):
net_l = [net_l]
for net in net_l:
for m in net.modules():
if isinstance(m, nn.Conv2d):
init.xavier_normal_(m.weight)
m.weight.data *= scale # for residual block
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
init.xavier_normal_(m.weight)
m.weight.data *= scale
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias.data, 0.0)
class DenseBlock(nn.Module):
def __init__(self, channel_in, channel_out, init="xavier", gc=32, bias=True):
super(DenseBlock, self).__init__()
self.conv1 = nn.Conv2d(channel_in, gc, 3, 1, 1, bias=bias)
self.conv2 = nn.Conv2d(channel_in + gc, gc, 3, 1, 1, bias=bias)
self.conv3 = nn.Conv2d(channel_in + 2 * gc, gc, 3, 1, 1, bias=bias)
self.conv4 = nn.Conv2d(channel_in + 3 * gc, gc, 3, 1, 1, bias=bias)
self.conv5 = nn.Conv2d(channel_in + 4 * gc, channel_out, 3, 1, 1, bias=bias)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
if init == "xavier":
initialize_weights_xavier(
[self.conv1, self.conv2, self.conv3, self.conv4], 0.1
)
else:
initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4], 0.1)
initialize_weights(self.conv5, 0)
def forward(self, x):
x1 = self.lrelu(self.conv1(x))
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
return x5
def subnet(net_structure, init="xavier"):
def constructor(channel_in, channel_out):
if net_structure == "DBNet":
if init == "xavier":
return DenseBlock(channel_in, channel_out, init)
else:
return DenseBlock(channel_in, channel_out)
# return UNetBlock(channel_in, channel_out)
else:
return None
return constructor
class InvBlock(nn.Module):
def __init__(self, subnet_constructor, channel_num, channel_split_num, clamp=0.8):
super(InvBlock, self).__init__()
# channel_num: 3
# channel_split_num: 1
self.split_len1 = channel_split_num # 1
self.split_len2 = channel_num - channel_split_num # 2
self.clamp = clamp
self.F = subnet_constructor(self.split_len2, self.split_len1)
self.G = subnet_constructor(self.split_len1, self.split_len2)
self.H = subnet_constructor(self.split_len1, self.split_len2)
in_channels = 3
self.invconv = InvertibleConv1x1(in_channels, LU_decomposed=True)
self.flow_permutation = lambda z, logdet, rev: self.invconv(z, logdet, rev)
def forward(self, x, rev=False):
if not rev:
# invert1x1conv
x, logdet = self.flow_permutation(x, logdet=0, rev=False)
# split to 1 channel and 2 channel.
x1, x2 = (
x.narrow(1, 0, self.split_len1),
x.narrow(1, self.split_len1, self.split_len2),
)
y1 = x1 + self.F(x2) # 1 channel
self.s = self.clamp * (torch.sigmoid(self.H(y1)) * 2 - 1)
y2 = x2.mul(torch.exp(self.s)) + self.G(y1) # 2 channel
out = torch.cat((y1, y2), 1)
else:
# split.
x1, x2 = (
x.narrow(1, 0, self.split_len1),
x.narrow(1, self.split_len1, self.split_len2),
)
self.s = self.clamp * (torch.sigmoid(self.H(x1)) * 2 - 1)
y2 = (x2 - self.G(x1)).div(torch.exp(self.s))
y1 = x1 - self.F(y2)
x = torch.cat((y1, y2), 1)
# inv permutation
out, logdet = self.flow_permutation(x, logdet=0, rev=True)
return out
class InvISPNet(nn.Module):
def __init__(
self,
channel_in=3,
channel_out=3,
subnet_constructor=subnet("DBNet"),
block_num=8,
):
super(InvISPNet, self).__init__()
operations = []
current_channel = channel_in
channel_num = channel_in
channel_split_num = 1
for j in range(block_num):
b = InvBlock(
subnet_constructor, channel_num, channel_split_num
) # one block is one flow step.
operations.append(b)
self.operations = nn.ModuleList(operations)
self.initialize()
def initialize(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.xavier_normal_(m.weight)
m.weight.data *= 1.0 # for residual block
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
init.xavier_normal_(m.weight)
m.weight.data *= 1.0
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias.data, 0.0)
def forward(self, x, rev=False):
out = x # x: [N,3,H,W]
if not rev:
for op in self.operations:
out = op.forward(out, rev)
else:
for op in reversed(self.operations):
out = op.forward(out, rev)
return out