Spaces:
Running
Running
import numpy as np | |
import torch | |
from roma.utils import * | |
from PIL import Image | |
from tqdm import tqdm | |
import torch.nn.functional as F | |
import roma | |
import kornia.geometry.epipolar as kepi | |
class MegaDepthPoseEstimationBenchmark: | |
def __init__(self, data_root="data/megadepth", scene_names=None) -> None: | |
if scene_names is None: | |
self.scene_names = [ | |
"0015_0.1_0.3.npz", | |
"0015_0.3_0.5.npz", | |
"0022_0.1_0.3.npz", | |
"0022_0.3_0.5.npz", | |
"0022_0.5_0.7.npz", | |
] | |
else: | |
self.scene_names = scene_names | |
self.scenes = [ | |
np.load(f"{data_root}/{scene}", allow_pickle=True) | |
for scene in self.scene_names | |
] | |
self.data_root = data_root | |
def benchmark( | |
self, | |
model, | |
model_name=None, | |
resolution=None, | |
scale_intrinsics=True, | |
calibrated=True, | |
): | |
H, W = model.get_output_resolution() | |
with torch.no_grad(): | |
data_root = self.data_root | |
tot_e_t, tot_e_R, tot_e_pose = [], [], [] | |
thresholds = [5, 10, 20] | |
for scene_ind in range(len(self.scenes)): | |
import os | |
scene_name = os.path.splitext(self.scene_names[scene_ind])[0] | |
scene = self.scenes[scene_ind] | |
pairs = scene["pair_infos"] | |
intrinsics = scene["intrinsics"] | |
poses = scene["poses"] | |
im_paths = scene["image_paths"] | |
pair_inds = range(len(pairs)) | |
for pairind in tqdm(pair_inds): | |
idx1, idx2 = pairs[pairind][0] | |
K1 = intrinsics[idx1].copy() | |
T1 = poses[idx1].copy() | |
R1, t1 = T1[:3, :3], T1[:3, 3] | |
K2 = intrinsics[idx2].copy() | |
T2 = poses[idx2].copy() | |
R2, t2 = T2[:3, :3], T2[:3, 3] | |
R, t = compute_relative_pose(R1, t1, R2, t2) | |
T1_to_2 = np.concatenate((R, t[:, None]), axis=-1) | |
im_A_path = f"{data_root}/{im_paths[idx1]}" | |
im_B_path = f"{data_root}/{im_paths[idx2]}" | |
dense_matches, dense_certainty = model.match( | |
im_A_path, im_B_path, K1.copy(), K2.copy(), T1_to_2.copy() | |
) | |
sparse_matches, _ = model.sample( | |
dense_matches, dense_certainty, 5000 | |
) | |
im_A = Image.open(im_A_path) | |
w1, h1 = im_A.size | |
im_B = Image.open(im_B_path) | |
w2, h2 = im_B.size | |
if scale_intrinsics: | |
scale1 = 1200 / max(w1, h1) | |
scale2 = 1200 / max(w2, h2) | |
w1, h1 = scale1 * w1, scale1 * h1 | |
w2, h2 = scale2 * w2, scale2 * h2 | |
K1, K2 = K1.copy(), K2.copy() | |
K1[:2] = K1[:2] * scale1 | |
K2[:2] = K2[:2] * scale2 | |
kpts1 = sparse_matches[:, :2] | |
kpts1 = np.stack( | |
( | |
w1 * (kpts1[:, 0] + 1) / 2, | |
h1 * (kpts1[:, 1] + 1) / 2, | |
), | |
axis=-1, | |
) | |
kpts2 = sparse_matches[:, 2:] | |
kpts2 = np.stack( | |
( | |
w2 * (kpts2[:, 0] + 1) / 2, | |
h2 * (kpts2[:, 1] + 1) / 2, | |
), | |
axis=-1, | |
) | |
for _ in range(5): | |
shuffling = np.random.permutation(np.arange(len(kpts1))) | |
kpts1 = kpts1[shuffling] | |
kpts2 = kpts2[shuffling] | |
try: | |
threshold = 0.5 | |
if calibrated: | |
norm_threshold = threshold / ( | |
np.mean(np.abs(K1[:2, :2])) | |
+ np.mean(np.abs(K2[:2, :2])) | |
) | |
R_est, t_est, mask = estimate_pose( | |
kpts1, | |
kpts2, | |
K1, | |
K2, | |
norm_threshold, | |
conf=0.99999, | |
) | |
T1_to_2_est = np.concatenate((R_est, t_est), axis=-1) # | |
e_t, e_R = compute_pose_error(T1_to_2_est, R, t) | |
e_pose = max(e_t, e_R) | |
except Exception as e: | |
print(repr(e)) | |
e_t, e_R = 90, 90 | |
e_pose = max(e_t, e_R) | |
tot_e_t.append(e_t) | |
tot_e_R.append(e_R) | |
tot_e_pose.append(e_pose) | |
tot_e_pose = np.array(tot_e_pose) | |
auc = pose_auc(tot_e_pose, thresholds) | |
acc_5 = (tot_e_pose < 5).mean() | |
acc_10 = (tot_e_pose < 10).mean() | |
acc_15 = (tot_e_pose < 15).mean() | |
acc_20 = (tot_e_pose < 20).mean() | |
map_5 = acc_5 | |
map_10 = np.mean([acc_5, acc_10]) | |
map_20 = np.mean([acc_5, acc_10, acc_15, acc_20]) | |
print(f"{model_name} auc: {auc}") | |
return { | |
"auc_5": auc[0], | |
"auc_10": auc[1], | |
"auc_20": auc[2], | |
"map_5": map_5, | |
"map_10": map_10, | |
"map_20": map_20, | |
} | |