Vincentqyw
update: features and matchers
a80d6bb
raw
history blame
5.38 kB
import os
import sys
import cv2
from pathlib import Path
import numpy as np
import torch
import torch.utils.data as data
from tqdm import tqdm
from copy import deepcopy
from torchvision.transforms import ToTensor
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from alike import ALike, configs
dataset_root = 'hseq/hpatches-sequences-release'
use_cuda = torch.cuda.is_available()
device = 'cuda' if use_cuda else 'cpu'
methods = ['alike-n', 'alike-l', 'alike-n-ms', 'alike-l-ms']
class HPatchesDataset(data.Dataset):
def __init__(self, root: str = dataset_root, alteration: str = 'all'):
"""
Args:
root: dataset root path
alteration: # 'all', 'i' for illumination or 'v' for viewpoint
"""
assert (Path(root).exists()), f"Dataset root path {root} dose not exist!"
self.root = root
# get all image file name
self.image0_list = []
self.image1_list = []
self.homographies = []
folders = [x for x in Path(self.root).iterdir() if x.is_dir()]
self.seqs = []
for folder in folders:
if alteration == 'i' and folder.stem[0] != 'i':
continue
if alteration == 'v' and folder.stem[0] != 'v':
continue
self.seqs.append(folder)
self.len = len(self.seqs)
assert (self.len > 0), f'Can not find PatchDataset in path {self.root}'
def __getitem__(self, item):
folder = self.seqs[item]
imgs = []
homos = []
for i in range(1, 7):
img = cv2.imread(str(folder / f'{i}.ppm'), cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # HxWxC
imgs.append(img)
if i != 1:
homo = np.loadtxt(str(folder / f'H_1_{i}')).astype('float32')
homos.append(homo)
return imgs, homos, folder.stem
def __len__(self):
return self.len
def name(self):
return self.__class__
def extract_multiscale(model, img, scale_f=2 ** 0.5,
min_scale=1., max_scale=1.,
min_size=0., max_size=99999.,
image_size_max=99999,
n_k=0, sort=False):
H_, W_, three = img.shape
assert three == 3, "input image shape should be [HxWx3]"
old_bm = torch.backends.cudnn.benchmark
torch.backends.cudnn.benchmark = False # speedup
# ==================== image size constraint
image = deepcopy(img)
max_hw = max(H_, W_)
if max_hw > image_size_max:
ratio = float(image_size_max / max_hw)
image = cv2.resize(image, dsize=None, fx=ratio, fy=ratio)
# ==================== convert image to tensor
H, W, three = image.shape
image = ToTensor()(image).unsqueeze(0)
image = image.to(device)
s = 1.0 # current scale factor
keypoints, descriptors, scores, scores_maps, descriptor_maps = [], [], [], [], []
while s + 0.001 >= max(min_scale, min_size / max(H, W)):
if s - 0.001 <= min(max_scale, max_size / max(H, W)):
nh, nw = image.shape[2:]
# extract descriptors
with torch.no_grad():
descriptor_map, scores_map = model.extract_dense_map(image)
keypoints_, descriptors_, scores_, _ = model.dkd(scores_map, descriptor_map)
keypoints.append(keypoints_[0])
descriptors.append(descriptors_[0])
scores.append(scores_[0])
s /= scale_f
# down-scale the image for next iteration
nh, nw = round(H * s), round(W * s)
image = torch.nn.functional.interpolate(image, (nh, nw), mode='bilinear', align_corners=False)
# restore value
torch.backends.cudnn.benchmark = old_bm
keypoints = torch.cat(keypoints)
descriptors = torch.cat(descriptors)
scores = torch.cat(scores)
keypoints = (keypoints + 1) / 2 * keypoints.new_tensor([[W_ - 1, H_ - 1]])
if sort or 0 < n_k < len(keypoints):
indices = torch.argsort(scores, descending=True)
keypoints = keypoints[indices]
descriptors = descriptors[indices]
scores = scores[indices]
if 0 < n_k < len(keypoints):
keypoints = keypoints[0:n_k]
descriptors = descriptors[0:n_k]
scores = scores[0:n_k]
return {'keypoints': keypoints, 'descriptors': descriptors, 'scores': scores}
def extract_method(m):
hpatches = HPatchesDataset(root=dataset_root, alteration='all')
model = m[:7]
min_scale = 0.3 if m[8:] == 'ms' else 1.0
model = ALike(**configs[model], device=device, top_k=0, scores_th=0.2, n_limit=5000)
progbar = tqdm(hpatches, desc='Extracting for {}'.format(m))
for imgs, homos, seq_name in progbar:
for i in range(1, 7):
img = imgs[i - 1]
pred = extract_multiscale(model, img, min_scale=min_scale, max_scale=1, sort=False, n_k=5000)
kpts, descs, scores = pred['keypoints'], pred['descriptors'], pred['scores']
with open(os.path.join(dataset_root, seq_name, f'{i}.ppm.{m}'), 'wb') as f:
np.savez(f, keypoints=kpts.cpu().numpy(),
scores=scores.cpu().numpy(),
descriptors=descs.cpu().numpy())
if __name__ == '__main__':
for method in methods:
extract_method(method)